-
1
-
-
0001966430
-
Negative binomial approximation with Stein's method
-
MR1770372
-
T.C. Brown and M.J. Phillips. Negative binomial approximation with Stein's method. Methodol. Comput. Appl. Probab. 1 (4), 407-421 (1999). MR1770372.
-
(1999)
Methodol. Comput. Appl. Probab
, vol.1
, Issue.4
, pp. 407-421
-
-
Brown, T.C.1
Phillips, M.J.2
-
2
-
-
0001067389
-
Poisson approximation for dependent trials
-
MR0428387
-
L.H.Y. Chen. Poisson approximation for dependent trials. Ann. Probability 3 (3), 534-545 (1975). MR0428387.
-
(1975)
Ann. Probability
, vol.3
, Issue.3
, pp. 534-545
-
-
Chen, L.H.Y.1
-
4
-
-
85010849634
-
-
Papers from the Workshop on Stein's Method held at Stanford University, Stanford, CA, 1998. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 46. Institute of Mathematical Statistics, Beachwood, OH MR2118599
-
P. Diaconis and S. Holmes, editors. Stein's method: expository lectures and applications. Papers from the Workshop on Stein's Method held at Stanford University, Stanford, CA, 1998. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 46. Institute of Mathematical Statistics, Beachwood, OH (2004). MR2118599.
-
(2004)
Stein's method: expository lectures and applications
-
-
Diaconis, P.1
Holmes, S.2
-
6
-
-
0003014023
-
Binomial approximation to the Poisson binomial distribution
-
MR1093412
-
W. Ehm. Binomial approximation to the Poisson binomial distribution. Statist. Probab. Lett. 11 (1), 7-16 (1991). MR1093412.
-
(1991)
Statist. Probab. Lett
, vol.11
, Issue.1
, pp. 7-16
-
-
Ehm, W.1
-
7
-
-
0031260681
-
Stein's method and the zero bias transformation with application to simple random sampling
-
MR1484792
-
L. Goldstein and G. Reinert. Stein's method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7 (4), 935-952 (1997). MR1484792.
-
(1997)
Ann. Appl. Probab
, vol.7
, Issue.4
, pp. 935-952
-
-
Goldstein, L.1
Reinert, G.2
-
8
-
-
16244412903
-
Distributional transformations, orthogonal polynomials, and Stein characterizations
-
MR2132278
-
L. Goldstein and G. Reinert. Distributional transformations, orthogonal polynomials, and Stein characterizations. J. Theoret. Probab. 18 (1), 237-260 (2005). MR2132278.
-
(2005)
J. Theoret. Probab
, vol.18
, Issue.1
, pp. 237-260
-
-
Goldstein, L.1
Reinert, G.2
-
9
-
-
0003792898
-
-
Risk analysis, reliability, queueing, volume 413 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht MR1471479
-
V. Kalashnikov. Geometric sums: bounds for rare events with applications. Risk analysis, reliability, queueing, volume 413 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1997). MR1471479.
-
(1997)
Geometric sums: bounds for rare events with applications
-
-
Kalashnikov, V.1
-
10
-
-
0003939997
-
-
A revisit with applications to communications, economics, engineering, and finance. Birkhäuser Boston, Inc., Boston, MA MR1935481
-
S. Kotz, T.J. Kozubowski and K. Podgórski. The Laplace distribution and generalizations. A revisit with applications to communications, economics, engineering, and finance. Birkhäuser Boston, Inc., Boston, MA (2001). MR1935481.
-
(2001)
The Laplace distribution and generalizations
-
-
Kotz, S.1
Kozubowski, T.J.2
Podgórski, K.3
-
12
-
-
79952720651
-
New rates for exponential approximation and the theorems of Rényi and Yaglom
-
MR2789507
-
E.A. Peköz and A. Röllin. New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 39 (2), 587-608 (2011). MR2789507.
-
(2011)
Ann. Probab
, vol.39
, Issue.2
, pp. 587-608
-
-
Peköz, E.A.1
Röllin, A.2
-
13
-
-
84881508985
-
Total variation error bounds for geometric approximation
-
MR3037166
-
E.A. Peköz, A. Röllin and N. Ross. Total variation error bounds for geometric approximation. Bernoulli 19 (2), 610-632 (2013). MR3037166.
-
(2013)
Bernoulli
, vol.19
, Issue.2
, pp. 610-632
-
-
Peköz, E.A.1
Röllin, A.2
Ross, N.3
-
14
-
-
0039832225
-
A characterization of Poisson processes
-
(1957) MR0094861
-
A. Rényi. A characterization of Poisson processes. Magyar Tud. Akad. Mat. Kutató Int. Közl. 1, 519-527 (1957) (1957). MR0094861.
-
(1957)
Magyar Tud. Akad. Mat. Kutató Int. Közl
, vol.1
, pp. 519-527
-
-
Rényi, A.1
-
15
-
-
84859055106
-
Fundamentals of Stein's method
-
MR2861132
-
N. Ross. Fundamentals of Stein's method. Probab. Surv. 8, 210-293 (2011). MR2861132.
-
(2011)
Probab. Surv
, vol.8
, pp. 210-293
-
-
Ross, N.1
-
16
-
-
0000457248
-
A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
-
Univ. California Press, Berkeley, Calif. MR0402873
-
C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pages 583-602. Univ. California Press, Berkeley, Calif. (1972). MR0402873.
-
(1972)
In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971): Probability theory
, vol.2
, pp. 583-602
-
-
Stein, C.1
-
17
-
-
0003722779
-
-
Institute of Mathematical Statistics Lecture Notes-Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA MR882007
-
C. Stein. Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes-Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA (1986). MR882007.
-
(1986)
Approximate computation of expectations
-
-
Stein, C.1
|