-
1
-
-
0001081045
-
Gödel’s second incompleteness theorem for Q
-
Bezboruah, A., and J. Shepherdson,“Gödel’s second incompleteness theorem for Q,” The Journal of Symbolic Logic, vol. 41 (1977), pp. 503-12.
-
(1977)
The Journal of Symbolic Logic
, vol.41
, pp. 503-512
-
-
Bezboruah, A.1
Shepherdson, J.2
-
2
-
-
0003125686
-
Systems of predicative analysis
-
Feferman, S., “Systems of predicative analysis,” The Journal of Symbolic Logic, vol. 29 (1964), pp. 1-30.
-
(1964)
The Journal of Symbolic Logic
, vol.29
, pp. 1-30
-
-
Feferman, S.1
-
3
-
-
2942697866
-
Predicative foundations of arithmetic
-
Feferman, S., and G. Hellman,“Predicative foundations of arithmetic,” Journal of Philosophical Logic, vol. 24 (1995), pp. 1-17.
-
(1995)
Journal Of
, vol.24
, pp. 1-17
-
-
Feferman, S.1
Hellman, G.2
-
4
-
-
0003569679
-
-
Mathematical Institute of the Polish Academy of Sciences, Warsaw
-
Grzegorczyk, A., Some Classes of Recursive Functions, Mathematical Reports 4, Mathematical Institute of the Polish Academy of Sciences, Warsaw, 1953.
-
(1953)
Some Classes of Recursive Functions, Mathematical Reports
, vol.4
-
-
Grzegorczyk, A.1
-
5
-
-
0003543456
-
Metamathematics of First-Order Arithmetic
-
Springer, Berlin
-
Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic, Springer, Berlin, 1991.
-
(1991)
Perspectives in Mathematical Logic
-
-
Hájek, P.1
Pudlák, P.2
-
6
-
-
85035291880
-
Russellian predicative arithmetic I: Capturing IDO
-
University of Melbourne
-
Hazen, A. P., “Russellian predicative arithmetic I: Capturing IDO,” Philosophy Preprint Series 2/88, University of Melbourne, 1988.
-
(1988)
Philosophy Preprint Series 2/88
-
-
Hazen, A.P.1
-
7
-
-
84972492537
-
Interpretability of Robinson arithmetic in the ramified second-order
-
Hazen, A. P., “Interpretability of Robinson arithmetic in the ramified second-order theory of dense linear order,” Notre Dame Journal of Formal Logic, vol. 33 (1992), pp. 101-11.
-
(1992)
Notre Dame Journal of Formal Logic
, vol.33
, pp. 101-111
-
-
Hazen, A.P.1
-
8
-
-
33751195043
-
Grundgesetze der Arithmetik I §§29-32
-
Heck, R. G., Jnr., “Grundgesetze der Arithmetik I §§29-32,” Notre Dame Journal of Formal Logic, vol. 38, pp. 437-74.
-
Notre Dame Journal of Formal Logic
, vol.38
, pp. 437-474
-
-
Heck, R.G.1
-
10
-
-
85035293359
-
Abstraction and computational complexity(Abstract)
-
Leivant, D.,“Abstraction and computational complexity” (abstract), The Journal of Symbolic Logic, vol. 55 (1990), pp. 379-80.
-
(1990)
The Journal Of
, vol.55
, pp. 379-380
-
-
Leivant, D.1
-
11
-
-
0026191658
-
Finitely stratified polymorphism
-
Leivant, D.,“Finitely stratified polymorphism,” Information and Computing, vol. 93 (1991), pp. 93-113.
-
(1991)
Information and Computing
, vol.93
, pp. 93-113
-
-
Leivant, D.1
-
12
-
-
84972548002
-
A minimal predicative set theory
-
Montagna, F., and A. Mancini, “A minimal predicative set theory,” Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 186-203.
-
(1994)
Notre Dame Journal of Formal Logic
, vol.35
, pp. 186-203
-
-
Montagna, F.1
Mancini, A.2
-
13
-
-
0004109267
-
-
Princeton University Press, Princeton
-
Nelson, E., Predicative Arithmetic, Princeton University Press, Princeton, 1986.
-
(1986)
Predicative Arithmetic
-
-
Nelson, E.1
-
14
-
-
0342401325
-
A construction of models of consistent systems
-
Novak Gal, I. L., “A construction of models of consistent systems,” Fundamenta Math-ematicae, vol. 37 (1950), pp. 87-110.
-
(1950)
Fundamenta Math-Ematicae
, vol.37
, pp. 87-110
-
-
Novak Gal, I.L.1
-
15
-
-
84922130639
-
The impredicativity of induction
-
edited by L. S. Cauman et al., Hackett, Indi-anapolis
-
Parsons, C., “The impredicativity of induction,” pp. 132-54 in How Many Questions? Essays in Honor of Sidney Morgenbesser, edited by L. S. Cauman et al., Hackett, Indi-anapolis, 1983.
-
(1983)
How Many Questions? Essays in Honor of Sidney Morgenbesser
, pp. 132-154
-
-
Parsons, C.1
-
16
-
-
84972544418
-
On the consistency of the first-order portion of Frege’s logical system
-
Parsons, T., “On the consistency of the first-order portion of Frege’s logical system,” Notre Dame Journal of Formal Logic, vol. 28 (1987), pp. 161-88.
-
(1987)
Notre Dame Journal of Formal Logic
, vol.28
, pp. 161-188
-
-
Parsons, T.1
-
18
-
-
70350692068
-
-
From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931, translated by S. BauerMengelberg, edited by J. van Heijenoort, Harvard University Press, Cambridge
-
Skolem, T., “The foundations of elementary arithmetic,” pp. 302-33 in From Frege to Gödel: A Source Book in Mathematical Logic 1879-1931, translated by S. BauerMengelberg, edited by J. van Heijenoort, Harvard University Press, Cambridge, 1967.
-
(1967)
The foundations of elementary arithmetic
, pp. 302-333
-
-
Skolem, T.1
-
20
-
-
0004238871
-
-
North-Holland, Amsterdam
-
Tarski, A., A. Mostowski, and R. M. Robinson, Undecidable Theories, North-Holland, Amsterdam, 1953.
-
(1953)
Undecidable Theories
-
-
Tarski, A.1
Mostowski, A.2
Robinson, R.M.3
-
22
-
-
0004169601
-
-
2d edition, Cambridge University Press, Cambridge
-
Whitehead, A. N., and B. Russell, Principia Mathematica, vol. 1, 2d edition, Cambridge University Press, Cambridge, 1925.
-
(1925)
Principia Mathematica
, vol.1
-
-
Whitehead, A.N.1
Russell, B.2
|