메뉴 건너뛰기




Volumn 34, Issue 2, 2013, Pages 712-728

Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85010540243     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2012.713142     Document Type: Article
Times cited : (195)

References (66)
  • 1
    • 85010501022 scopus 로고    scopus 로고
    • Imaging Spectroscopy for Estimating Sugarcane Leaf Nitrogen Concentration
    • edited by C. M. U. Neale, M. Owe, and G. D’Urso, Cardiff, UK, September 16-18, 2008, V-1-12. Cardiff: SPIE
    • Abdel-Rahman, E. M., F. B. Ahmed, and M. van den Berg. 2008. “Imaging Spectroscopy for Estimating Sugarcane Leaf Nitrogen Concentration.” In Proceedings of Remote Sensing for Agriculture, Ecosystems, and Hydrology X, edited by C. M. U. Neale, M. Owe, and G. D’Urso, Cardiff, UK, September 16-18, 2008, V-1-12. Cardiff: SPIE.
    • (2008) Proceedings of Remote Sensing for Agriculture, Ecosystems, and Hydrology X
    • Abdel-Rahman, E.M.1    Ahmed, F.B.2    van den Berg, M.3
  • 4
    • 35748978234 scopus 로고    scopus 로고
    • Empirical Characterisation of Random Forest Variable Importance Measures
    • Archer, K. J., and R. V. Kimes. 2008. “Empirical Characterisation of Random Forest Variable Importance Measures.”Computational Statistics and Data Analysis52: 2249-2260.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 5
    • 0024903665 scopus 로고
    • Associations Between Host-Plant Nitrogen and Infestation of Sugarcane Borer, Eldana Saccharina Walker (Lepidoptera: Pyralidae)
    • Atkinson, P. R., and K. J. Nuss. 1989. “Associations Between Host-Plant Nitrogen and Infestation of Sugarcane Borer, Eldana Saccharina Walker (Lepidoptera: Pyralidae).”Bulletin ofEntomological Research79: 489-506.
    • (1989) Bulletin Ofentomological Research , vol.79 , pp. 489-506
    • Atkinson, P.R.1    Nuss, K.J.2
  • 6
    • 0002065620 scopus 로고    scopus 로고
    • Radiometric Estimates ofNitrogen Status of Leaves and Canopies
    • edited by G. Lemaire, Berlin: SpringerVerlag Publisher
    • Baret, F., and Th. Fourty. 1997. “Radiometric Estimates ofNitrogen Status of Leaves and Canopies.” In Diagnosis of the Nitrogen Status in Crops, edited by G. Lemaire, 201-27. Berlin: SpringerVerlag Publisher.
    • (1997) Diagnosis of the Nitrogen Status in Crops , pp. 201-227
    • Baret, F.1    Fourty, T.H.2
  • 9
    • 0037429457 scopus 로고    scopus 로고
    • A Method for Predicting Fresh Green Leaf Nitrogen Concentration from Shortwave Infrared Reflectance Spectra Acquired at the Canopy Level That Requires No In Situ Nitrogen Data
    • Bortolot, Z. J., and R. H. Wynne. 2003. “A Method for Predicting Fresh Green Leaf Nitrogen Concentration from Shortwave Infrared Reflectance Spectra Acquired at the Canopy Level That Requires No In Situ Nitrogen Data.”International Journal of Remote Sensing24: 619-624.
    • (2003) International Journal of Remote Sensing , vol.24 , pp. 619-624
    • Bortolot, Z.J.1    Wynne, R.H.2
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.”Machine Learning45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotype Mapping Using Airborne Hyperspectral Imagery
    • Chan, C.-W J., and D. Paelinckx. 2008. “Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotype Mapping Using Airborne Hyperspectral Imagery.”Remote Sensing of Environment112: 2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, C.-W.J.1    Paelinckx, D.2
  • 12
    • 33644781472 scopus 로고    scopus 로고
    • A New Technique for Extracting the Red Edge Position from Hyperspectral Data: The Linear Extrapolation Method
    • Cho, M. A., and A. K. Skidmore. 2006. “A New Technique for Extracting the Red Edge Position from Hyperspectral Data: The Linear Extrapolation Method.”Remote Sensing of Environment101: 181-193.
    • (2006) Remote Sensing of Environment , vol.101 , pp. 181-193
    • Cho, M.A.1    Skidmore, A.K.2
  • 13
    • 0348032647 scopus 로고
    • Imaging Spectrometry - Its Present and Future Role in Environmental Research
    • edited by J. Hill and J. Mégier, London: Kluwer Academic Publishers
    • Curran, P. J. 1994. “Imaging Spectrometry - Its Present and Future Role in Environmental Research.” In Imaging Spectrometry -A Tool for Environmental Observations, edited by J. Hill and J. Mégier, 1-23. London: Kluwer Academic Publishers.
    • (1994) Imaging Spectrometry -A Tool for Environmental Observations , pp. 1-23
    • Curran, P.J.1
  • 14
    • 0003032927 scopus 로고
    • Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine
    • Curran, P. J., J. L. Dungan, and H. L. Gholz. 1990. “Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine.”Tree Physiology7: 33-48.
    • (1990) Tree Physiology , vol.7 , pp. 33-48
    • Curran, P.J.1    Dungan, J.L.2    Gholz, H.L.3
  • 15
    • 0031768181 scopus 로고    scopus 로고
    • Imaging Spectrometry for Monitoring Tree Damage Caused by Volcanic Activity in the Long Valley Caldera, California
    • de Jong, S. M. 1998. “Imaging Spectrometry for Monitoring Tree Damage Caused by Volcanic Activity in the Long Valley Caldera, California.”ITC Journal1: 1-10.
    • (1998) ITC Journal , vol.1 , pp. 1-10
    • De Jong, S.M.1
  • 16
    • 40349114785 scopus 로고    scopus 로고
    • Phase Correlation Based Redundancy Removal in Feature Weighting Band Selection for Hyperspectral Images
    • Demir, B., and S. Ertürk. 2008. “Phase Correlation Based Redundancy Removal in Feature Weighting Band Selection for Hyperspectral Images.”International Journal of Remote Sensing29: 1801-1807.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1801-1807
    • Demir, B.1    Ertürk, S.2
  • 17
    • 30644464444 scopus 로고    scopus 로고
    • Gene Selection and Classification of Microarray Data Using Random Forest
    • Accessed April 24, 2009
    • Díaz-Uriarte, R., and S. A. de Andrés. 2006. “Gene Selection and Classification of Microarray Data Using Random Forest.” BMC Bioinformatics. Accessed April 24, 2009. http://www.biomedcentral.com/content/pdf/1471-2105-7-3.pdf.
    • (2006) BMC Bioinformatics
    • Díaz-Uriarte, R.1    De Andrés, S.A.2
  • 23
    • 77953351710 scopus 로고    scopus 로고
    • An Application of Random Forests to a Genome-Wide Association Dataset: Methodological Consideration & New Findings
    • Goldstein, B. A., A. E. Hubbard, A. Cutler, and L. F. Barcellos. 2010. “An Application of Random Forests to a Genome-Wide Association Dataset: Methodological Consideration New Findings.”BMC Genetics11: 1-13.
    • (2010) BMC Genetics , vol.11 , pp. 1-13
    • Goldstein, B.A.1    Hubbard, A.E.2    Cutler, A.3    Barcellos, L.F.4
  • 24
    • 48349147101 scopus 로고    scopus 로고
    • Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island - Digital Soil Mapping Using Random Forests Analysis
    • Grimm, R., T. Behrens, M. Märker, and H. Elsenbeer. 2008. “Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island - Digital Soil Mapping Using Random Forests Analysis.”Geoderma146: 102-113.
    • (2008) Geoderma , vol.146 , pp. 102-113
    • Grimm, R.1    Behrens, T.2    Märker, M.3    Elsenbeer, H.4
  • 25
  • 26
    • 0141792270 scopus 로고    scopus 로고
    • Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalised Difference Vegetation Indices and Partial Least Squares Regression
    • Hansen, P. M., and J. K. Schjoerring. 2003. “Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalised Difference Vegetation Indices and Partial Least Squares Regression.”Remote Sensing of Environment86: 542-553.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 542-553
    • Hansen, P.M.1    Schjoerring, J.K.2
  • 27
    • 77951282519 scopus 로고    scopus 로고
    • Remote Sensing of Forest Health: The Detection and Mapping of Pinus patula Trees Infested by Sirex noctilio
    • University of KwaZulu-Natal, South Africa
    • Ismail, R. 2009. “Remote Sensing of Forest Health: The Detection and Mapping of Pinus patula Trees Infested by Sirex noctilio.” PhD thesis, University of KwaZulu-Natal, South Africa.
    • (2009) Phd Thesis
    • Ismail, R.1
  • 28
    • 35948959081 scopus 로고    scopus 로고
    • Use of Hyperspectral Data to Assess the Effects of Different Nitrogen Applications on a Potato Crop
    • Jain, N., S. S. Ray, J. P. Singh, and S. PanigrAhy. 2007. “Use of Hyperspectral Data to Assess the Effects of Different Nitrogen Applications on a Potato Crop.”Precision Agriculture8: 225-239.
    • (2007) Precision Agriculture , vol.8 , pp. 225-239
    • Jain, N.1    Ray, S.S.2    Singh, J.P.3    Panigrahy, S.4
  • 29
    • 1142269663 scopus 로고    scopus 로고
    • Spectral Characteristics and Feature Selection of Hyperspectral Remote Sensing Data
    • Jiang, X., L. Tang, C. Wang, and C. Wang. 2004. “Spectral Characteristics and Feature Selection of Hyperspectral Remote Sensing Data.”International Journal of Remote Sensing25: 51-59.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 51-59
    • Jiang, X.1    Tang, L.2    Wang, C.3    Wang, C.4
  • 31
    • 85164392958 scopus 로고
    • A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • Québec, Cananda, August 20-25, 1995, Québec: Morgan Kaufmann
    • Kohavi, R. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Québec, Cananda, August 20-25, 1995, 1137-1143. Québec: Morgan Kaufmann.
    • (1995) Proceedings of the 14Th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 32
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for Feature Subset Selection
    • Kohavi, R., and G. H. John. 1997. “Wrappers for Feature Subset Selection.”Artificial Intelligence97: 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 33
    • 0013307067 scopus 로고    scopus 로고
    • Imaging Spectrometry and Vegetation Science
    • edited by F. D. van der Meer, and S. M. de Jong, London: Kluwer Academic Publishers
    • Kumar, L., K. Schmidt, S. Dury, and A. Skidmore. 2003. “Imaging Spectrometry and Vegetation Science.” In Image Spectrometry, edited by F. D. van der Meer, and S. M. de Jong, vol. 3,111-156. London: Kluwer Academic Publishers.
    • (2003) Image Spectrometry , vol.3 , pp. 111-156
    • Kumar, L.1    Schmidt, K.2    Dury, S.3    Skidmore, A.4
  • 34
    • 31344453556 scopus 로고    scopus 로고
    • Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (RANDomFOREST)
    • Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. “Mapping Invasive Plants Using Hyperspectral Imagery and Breiman Cutler Classifications (RANDomFOREST).”Remote Sensing of Environment100: 356-362.
    • (2006) Remote Sensing of Environment , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 35
    • 85010530796 scopus 로고    scopus 로고
    • St Joseph, MO: Leco Corporation
    • LECO. 2006. TruSPEC N® Analyser, FP-2000.St Joseph, MO: Leco Corporation.
    • (2006) Truspec N® Analyser, FP-2000
  • 36
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by Random Forest
    • Liaw, A., and M. Wiener. 2002. “Classification and Regression by Random Forest.”R News2/3: 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 38
    • 85010534470 scopus 로고    scopus 로고
    • Current Status and Future Needs in Modelling Plant Nitrogen Uptake: A Preface
    • edited by L. Ma, L. R. Ahuja, and T. Bruulsema, New York: Taylor & Francis
    • Ma, L., L. R. Ahuja, and T. W Bruulsema. 2009. “Current Status and Future Needs in Modelling Plant Nitrogen Uptake: A Preface.” In Quantifying and Understanding Plant Nitrogen Uptake for Systems Modelling, edited by L. Ma, L. R. Ahuja, and T. Bruulsema, 1-11. New York: Taylor Francis.
    • (2009) Quantifying and Understanding Plant Nitrogen Uptake for Systems Modelling , pp. 1-11
    • Ma, L.1    Ahuja, L.R.2    Bruulsema, T.W.3
  • 39
    • 84963908536 scopus 로고    scopus 로고
    • 2nd ed., edited by R. Gill, B. D. Ripley, S. Ross, B. W Silverman, and M. Stein, mbridge: Cambridge University Press
    • Maindonald, J., and J. Braun. 2006. Data Analysis and Graphics Using R: An Example-Based Approach. 2nd ed., edited by R. Gill, B. D. Ripley, S. Ross, B. W Silverman, and M. Stein, 540 p. Cambridge: Cambridge University Press.
    • (2006) Data Analysis and Graphics Using R: An Example-Based Approach , pp. 540
    • Maindonald, J.1    Braun, J.2
  • 40
    • 0028184037 scopus 로고
    • The Relationship Between Red Edge and Chlorophyll Concentration in the Broadbalk Winter Wheat Experiment at Rothamsted
    • Munden, R., P. J. Curran, and J. A. Catt. 1994. “The Relationship Between Red Edge and Chlorophyll Concentration in the Broadbalk Winter Wheat Experiment at Rothamsted.”International Journal of Remote Sensing15: 705-709.
    • (1994) International Journal of Remote Sensing , vol.15 , pp. 705-709
    • Munden, R.1    Curran, P.J.2    Catt, J.A.3
  • 41
    • 0842306346 scopus 로고    scopus 로고
    • Predicting In Situ Pasture Quality in Kruger National Park, South Africa, Using Continuum-Removed Absorption Features
    • Mutanga, O., A. K. Skidmore, and H. H. T. Prins. 2004. “Predicting In Situ Pasture Quality in Kruger National Park, South Africa, Using Continuum-Removed Absorption Features.”Remote Sensing ofEnvironment89: 393-408.
    • (2004) Remote Sensing Ofenvironment , vol.89 , pp. 393-408
    • Mutanga, O.1    Skidmore, A.K.2    Prins, H.H.T.3
  • 42
    • 70449380700 scopus 로고    scopus 로고
    • Use of Spatial Structure Analysis of Hyperspectral Data Cubes for Detection of Insect-Induced Stress in Wheat Plants
    • Nansen, C., T. Macedo, R. Swanson, and D. K. Weaver. 2009. “Use of Spatial Structure Analysis of Hyperspectral Data Cubes for Detection of Insect-Induced Stress in Wheat Plants.”International Journal of Remote Sensing30: 2447-2464.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 2447-2464
    • Nansen, C.1    Macedo, T.2    Swanson, R.3    Weaver, D.K.4
  • 43
    • 1142281876 scopus 로고    scopus 로고
    • Hyperspectral Monitoring of Physiological Parameters of Wheat During a Vegetation Period Using AVIS Data
    • Oppelt, N., and W Mauser. 2004. “Hyperspectral Monitoring of Physiological Parameters of Wheat During a Vegetation Period Using AVIS Data.”International Journal of Remote Sensing25: 145-159.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 145-159
    • Oppelt, N.1    Mauser, W.2
  • 44
    • 0036851692 scopus 로고    scopus 로고
    • Detection of Phosphorus and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements
    • Osborne, S. L., J. S. Schepers, D. D. Francis, and M. R. Schlemmer. 2002. “Detection of Phosphorus and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements.”Agronomy Journal94: 1215-1221.
    • (2002) Agronomy Journal , vol.94 , pp. 1215-1221
    • Osborne, S.L.1    Schepers, J.S.2    Francis, D.D.3    Schlemmer, M.R.4
  • 45
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M. 2005. “Random Forest Classifier for Remote Sensing Classification.”International Journal of Remote Sensing26: 217-222.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 217-222
    • Pal, M.1
  • 47
    • 33645330972 scopus 로고    scopus 로고
    • Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction
    • Prasad, A. M., L. R. Iverson, and A. Liaw. 2006. “Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction.”Ecosystems9: 181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 48
    • 48549086424 scopus 로고    scopus 로고
    • R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Accessed April 29, 2010. http://www.R-project.org.
    • (2008) R: A Language and Environment for Statistical Computing
  • 49
    • 0036741044 scopus 로고    scopus 로고
    • Narrow-Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton
    • Read, J. J., L. Tarpley, J. M. MCKinion, and K. R. Reddy. 2002. “Narrow-Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton.”Journal of Environmental Quality31: 1442-1452.
    • (2002) Journal of Environmental Quality , vol.31 , pp. 1442-1452
    • Read, J.J.1    Tarpley, L.2    McKinion, J.M.3    Reddy, K.R.4
  • 51
    • 44449151688 scopus 로고    scopus 로고
    • Institute of Food and Agricultural Sciences, University of Florida Document No. SS-AGR-228. Gainesville, FL: IFAS, UF
    • Rice, R. W., R. A. Gibert, and R. S. Lentini. 2006. Nutritional Requirements for Florida Sugarcane. Institute of Food and Agricultural Sciences, University of Florida Document No. SS-AGR-228. Gainesville, FL: IFAS, UF.
    • (2006) Nutritional Requirements for Florida Sugarcane
    • Rice, R.W.1    Gibert, R.A.2    Lentini, R.S.3
  • 52
    • 57649115557 scopus 로고    scopus 로고
    • Information sheet. Mount Edgecombe: South African Sugarcane Research Institute
    • SASRI. 2003. Leaf Sampling, Information sheet. Mount Edgecombe: South African Sugarcane Research Institute.
    • (2003) Leaf Sampling
  • 53
    • 67449086626 scopus 로고    scopus 로고
    • Hyperspectral Remote Sensing of Vegetation Using Red Edge Position Techniques
    • Shafri, H. Z. M., M. A. M. Salleh, and A. Ghiyamat. 2006. “Hyperspectral Remote Sensing of Vegetation Using Red Edge Position Techniques.”American Journal of Applied Sciences3: 1864-1871.
    • (2006) American Journal of Applied Sciences , vol.3 , pp. 1864-1871
    • Shafri, H.Z.M.1    Salleh, M.A.M.2    Ghiyamat, A.3
  • 54
    • 84889788171 scopus 로고    scopus 로고
    • Optimal Band Selection and Utility Evaluation for Spectral Systems
    • edited by C.-I. Chang, New York: John Wiley & Sons
    • Shen, S. S. 2007. “Optimal Band Selection and Utility Evaluation for Spectral Systems.” In Hyperspectral Data Exploitation: Theory and Applications, edited by C.-I. Chang, 227-243. New York: John Wiley Sons.
    • (2007) Hyperspectral Data Exploitation: Theory and Applications , pp. 227-243
    • Shen, S.S.1
  • 55
    • 0042883954 scopus 로고    scopus 로고
    • Analysis of Hyperspectral Data for Estimation of Temperate Forest Canopy Nitrogen Concentration: Comparison between an Airborne (AVIRIS) and Spaceborne (Hyperion) Sensor
    • Smith, M. -L., M. E. Martin, L. Plourde, and S. V. Ollinger. 2003. “Analysis of Hyperspectral Data for Estimation of Temperate Forest Canopy Nitrogen Concentration: Comparison between an Airborne (AVIRIS) and Spaceborne (Hyperion) Sensor.”IEEE Transactions on Geoscience and Remote Sensing41: 1332-1337.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , pp. 1332-1337
    • Smith, M.-L.1    Martin, M.E.2    Plourde, L.3    Ollinger, S.V.4
  • 56
    • 0034530301 scopus 로고    scopus 로고
    • Reflectance Indices with Precision and Accuracy in Predicting Cotton Leaf Nitrogen Concentration
    • Tarpley, L., K. R. Reddy, and G. F. Sassenrath-Cole. 2000. “Reflectance Indices with Precision and Accuracy in Predicting Cotton Leaf Nitrogen Concentration.”Crop Science40: 1814-1819.
    • (2000) Crop Science , vol.40 , pp. 1814-1819
    • Tarpley, L.1    Reddy, K.R.2    Sassenrath-Cole, G.F.3
  • 59
    • 77958064179 scopus 로고    scopus 로고
    • Mining Data with Random Forests: A Survey and Results of New Tests
    • Verikas, A., A. Gelzinis, and M. Bacauskiene. 2011. “Mining Data with Random Forests: A Survey and Results of New Tests.”Pattern Recognition44: 330-349.
    • (2011) Pattern Recognition , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 60
    • 3242764494 scopus 로고    scopus 로고
    • Inversion of Foliar Biochemical Parameters at Various Physiological Stages and Grain Quality Indicators of Winter Wheat with Canopy Reflectance
    • Wenjiang, H., W. Jihua, W. Zhijie, Z. Jiang, L. Liangyun, and W. Jindi. 2004. “Inversion of Foliar Biochemical Parameters at Various Physiological Stages and Grain Quality Indicators of Winter Wheat with Canopy Reflectance.”International Journal of Remote Sensing 25: 2409-2419.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 2409-2419
    • Wenjiang, H.1    Jihua, W.2    Zhijie, W.3    Jiang, Z.4    Liangyun, L.5    Jindi, W.6
  • 61
    • 0034013411 scopus 로고    scopus 로고
    • “Water Stress during Different Sugarcane Growth Periods on Yield and Response to
    • Wiedenfeld, R. P. 2000. “Water Stress during Different Sugarcane Growth Periods on Yield and Response to N Fertilization.” Agricultural Water Management43: 173-182.
    • (2000) N Fertilization.” Agricultural Water Management , vol.43 , pp. 173-182
    • Wiedenfeld, R.P.1
  • 62
    • 0742285064 scopus 로고    scopus 로고
    • Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance
    • Xue, L., W. Cao, W. Luo, T. Dai, and Y. Zhu. 2004. “Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance.”Agronomy Journal96: 135-142.
    • (2004) Agronomy Journal , vol.96 , pp. 135-142
    • Xue, L.1    Cao, W.2    Luo, W.3    Dai, T.4    Zhu, Y.5
  • 63
    • 77951106223 scopus 로고    scopus 로고
    • Evaluating the Performance of PC-ANN for the Estimating of Rice Nitrogen Concentration from Canopy Hyperspectral Reflectance
    • Yi, Q., J. Huang, F. Wang, and X. Wang. 2010. “Evaluating the Performance of PC-ANN for the Estimating of Rice Nitrogen Concentration from Canopy Hyperspectral Reflectance.”International Journal of Remote Sensing31: 931-940.
    • (2010) International Journal of Remote Sensing , vol.31 , pp. 931-940
    • Yi, Q.1    Huang, J.2    Wang, F.3    Wang, X.4
  • 64
    • 0028980520 scopus 로고
    • Predicting Nitrogen and Chlorophyll Content and Concentration from Reflectance Spectra (400-2500 Nm) at Leaf and Canopy Scales
    • Yoder, B. J., and R. E. Pettigrew-Crosby. 1995. “Predicting Nitrogen and Chlorophyll Content and Concentration from Reflectance Spectra (400-2500 Nm) at Leaf and Canopy Scales.”Remote Sensing of Environment53: 199-211.
    • (1995) Remote Sensing of Environment , vol.53 , pp. 199-211
    • Yoder, B.J.1    Pettigrew-Crosby, R.E.2
  • 65
    • 0344961770 scopus 로고    scopus 로고
    • Corn (Zea Mays L.) Growth, Leaf Pigment Concentration, Photosynthesis and Leaf Hyperspectral Reflectance Properties as Affected by Nitrogen Supply
    • Zhao, D., K. R. Reddy, V G. Kakani, J. J. Read, and G. A. Carter. 2003. “Corn (Zea Mays L.) Growth, Leaf Pigment Concentration, Photosynthesis and Leaf Hyperspectral Reflectance Properties as Affected by Nitrogen Supply.”Plant and Soil257: 205-217.
    • (2003) Plant and Soil , vol.257 , pp. 205-217
    • Zhao, D.1    Reddy, K.R.2    Kakani, V.G.3    Read, J.J.4    Carter, G.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.