-
1
-
-
85010589695
-
-
Chapter 7, 2013 2013-07-20 2013-07-30 2013-08-09 2013-08-19 2013-08-29 0 100 200 300 400 500 600 700 800 900 Period (Dates) Power Consumption (Watts) Fig. 6. Energy consumption: Washing Machine
-
T. Yu, N. Chawla, S. Simoff, Computational Intelligent Data Analysis for Sustainable Development, Chapman and Hall/ CRC, Chapter 7, 2013 2013-07-20 2013-07-30 2013-08-09 2013-08-19 2013-08-29 0 100 200 300 400 500 600 700 800 900 Period (Dates) Power Consumption (Watts) Fig. 6. Energy consumption: Washing Machine
-
Computational Intelligent Data Analysis for Sustainable Development, Chapman and Hall/ CRC
-
-
Yu, T.1
Chawla, N.2
Simoff, S.3
-
2
-
-
84969674448
-
Using consumer behavior data to reduce energy consumption in smart homes
-
Miami, FL, USA London, UK: IEEE
-
D. Schweizer, M. Zehnder, H. Wache, H. F. Witschel, Using consumer behavior data to reduce energy consumption in smart homes, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, pp 1123-1129 London, UK: IEEE, 2015
-
(2015)
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)
, pp. 1123-1129
-
-
Schweizer, D.1
Zehnder, M.2
Wache, H.3
Witschel, H.F.4
-
3
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
NY, USA : ACM Press
-
J. Han, M. Kamber, J. Pei, Mining Frequent Patterns without Candidate Generation, In: Proc. Conf. on the Management of Data (SIGMOD00, Dallas, TX), pp 1-12. NY, USA : ACM Press, 2000
-
(2000)
: Proc. Conf. on the Management of Data (SIGMOD00, Dallas, TX)
, pp. 1-12
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
4
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
Netherlands : Kluwer Academic Publishers
-
J. Han, M. Kamber, J. Pei, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, 8, pp 53-87, 2004. Netherlands : Kluwer Academic Publishers, 2004
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, pp. 53-87
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
5
-
-
85013808225
-
-
Chapter 6 San Francisco USA: Morgan Kaufmann Publishers (Elsevier)
-
J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, (Third Edition), Chapter 6, pp 243-278. San Francisco, USA: Morgan Kaufmann Publishers (Elsevier), 2012
-
(2012)
Data Mining: Concepts and Techniques, (Third Edition)
, pp. 243-278
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
6
-
-
0001882616
-
Fast algorithms for mining association rules
-
Santiago, Chile. San Francisco, USA: Morgan Kaufmann Publishers (Elsevier)
-
R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules, In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94), Santiago, Chile. San Francisco, USA: Morgan Kaufmann Publishers (Elsevier), 1994
-
(1994)
Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94)
-
-
Agrawal, R.1
Srikant, R.2
-
7
-
-
84955260266
-
-
Sci. Data 2:150007 London, UK: Scientific Data
-
J. Kelly, W. Knottenbelt, The UK-DALE dataset, domestic appliancelevel electricity demand and whole-house demand from five UK homes., Sci. Data 2:150007 doi: 10.1038/sdata.2015.7. London, UK: Scientific Data, 2015
-
(2015)
The UK-DALE Dataset, Domestic Appliancelevel Electricity Demand and Whole-house Demand from Five UK Homes
-
-
Kelly, J.1
Knottenbelt, W.2
-
8
-
-
85010597524
-
Mining sequential patterns of event streams in a smart home application
-
KDML, FGWM, IR, and FGDB Trier, Germany, Trier, Germany
-
M. Hassani, C. Beecks, , D. Tws, T. Seidl, Mining Sequential Patterns of Event Streams in a Smart Home Application, Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, Trier, Germany: http://ceur-ws.org, 2015
-
(2015)
Proceedings of the LWA 2015 Workshops
-
-
Hassani, M.1
Beecks, C.2
Tws, D.3
Seidl, T.4
-
9
-
-
84964933198
-
Incrementally mining usage correlations among appliances in smart homes
-
Taiwan IEEE
-
Y. Chen, H. Hung, B. Chiang, S. Peng, P. Chen, Incrementally Mining Usage Correlations among Appliances in Smart Homes, 2015 18th International Conference on Network-Based Information Systems Taipei, Taiwan, pp 273-279 : IEEE, 2015
-
(2015)
18th International Conference on Network-Based Information Systems Taipei
, pp. 273-279
-
-
Chen, Y.1
Hung, H.2
Chiang, B.3
Peng, S.4
Chen, P.5
-
10
-
-
84901324549
-
Using rule mining to understand appliance energy consumption patterns
-
Budapest, Hungry IEEE
-
S. Rollins, N. Banerjee, Using Rule Mining to Understand Appliance Energy Consumption Patterns, 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), Budapest, Hungry, pp 29-37 : IEEE, 2014
-
(2014)
2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)
, pp. 29-37
-
-
Rollins, S.1
Banerjee, N.2
-
11
-
-
84939132290
-
Data mining techniques for detecting household characteristics based on smart meter data
-
Basel, Switzerland : Energies, MDPI
-
S.Rollins, N. Banerjee, Data Mining Techniques for Detecting Household Characteristics Based on Smart Meter Data, Energies 2015, 8(7), 7407-7427; doi:10.3390/en8077407 Basel, Switzerland : Energies, MDPI, 2015.
-
(2015)
Energies 2015
, vol.8
, Issue.7
, pp. 7407-7427
-
-
Rollins, S.1
Banerjee, N.2
|