메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Incremental mining of frequent power consumption patterns from smart meters big data

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; ELECTRIC POWER UTILIZATION; ENERGY UTILIZATION; SMART METERS;

EID: 85010506571     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/EPEC.2016.7771716     Document Type: Conference Paper
Times cited : (15)

References (11)
  • 1
    • 85010589695 scopus 로고    scopus 로고
    • Chapter 7, 2013 2013-07-20 2013-07-30 2013-08-09 2013-08-19 2013-08-29 0 100 200 300 400 500 600 700 800 900 Period (Dates) Power Consumption (Watts) Fig. 6. Energy consumption: Washing Machine
    • T. Yu, N. Chawla, S. Simoff, Computational Intelligent Data Analysis for Sustainable Development, Chapman and Hall/ CRC, Chapter 7, 2013 2013-07-20 2013-07-30 2013-08-09 2013-08-19 2013-08-29 0 100 200 300 400 500 600 700 800 900 Period (Dates) Power Consumption (Watts) Fig. 6. Energy consumption: Washing Machine
    • Computational Intelligent Data Analysis for Sustainable Development, Chapman and Hall/ CRC
    • Yu, T.1    Chawla, N.2    Simoff, S.3
  • 4
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Netherlands : Kluwer Academic Publishers
    • J. Han, M. Kamber, J. Pei, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, 8, pp 53-87, 2004. Netherlands : Kluwer Academic Publishers, 2004
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 53-87
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 8
    • 85010597524 scopus 로고    scopus 로고
    • Mining sequential patterns of event streams in a smart home application
    • KDML, FGWM, IR, and FGDB Trier, Germany, Trier, Germany
    • M. Hassani, C. Beecks, , D. Tws, T. Seidl, Mining Sequential Patterns of Event Streams in a Smart Home Application, Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, Trier, Germany: http://ceur-ws.org, 2015
    • (2015) Proceedings of the LWA 2015 Workshops
    • Hassani, M.1    Beecks, C.2    Tws, D.3    Seidl, T.4
  • 11
    • 84939132290 scopus 로고    scopus 로고
    • Data mining techniques for detecting household characteristics based on smart meter data
    • Basel, Switzerland : Energies, MDPI
    • S.Rollins, N. Banerjee, Data Mining Techniques for Detecting Household Characteristics Based on Smart Meter Data, Energies 2015, 8(7), 7407-7427; doi:10.3390/en8077407 Basel, Switzerland : Energies, MDPI, 2015.
    • (2015) Energies 2015 , vol.8 , Issue.7 , pp. 7407-7427
    • Rollins, S.1    Banerjee, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.