-
1
-
-
85010310622
-
The influence of wind speed, humidity, temperature and air pressure on pollutants concentrations of PM10 - Sarajevo case study using wavelet coherence approach
-
S. Avdakovic, N. Dautbasic, M. M. Dedovic and J. Dizdarevic, "The influence of wind speed, humidity, temperature and air pressure on pollutants concentrations of PM10 - Sarajevo case study using wavelet coherence approach," 2016 XI International Symposium on Telecommunications (BIHTEL) under review
-
2016 XI International Symposium on Telecommunications (BIHTEL) under Review
-
-
Avdakovic, S.1
Dautbasic, N.2
Dedovic, M.M.3
Dizdarevic, J.4
-
2
-
-
84959542151
-
Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies
-
H. Taheri Shahraiyni and S. Sodoudi, "Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies," Atmosphere 2016, 7, 15; doi:10.3390/atmos7020015
-
(2016)
Atmosphere
, vol.7
, pp. 15
-
-
Taheri Shahraiyni, H.1
Sodoudi, S.2
-
3
-
-
38949181014
-
Quality and performance of a PM10 daily forecasting model
-
E. Stadlober, S. Hörmann and B. Pfeiler, "Quality and performance of a PM10 daily forecasting model," Atmos. Environ. 2008, 42, 1098-1109.
-
(2008)
Atmos. Environ.
, vol.42
, pp. 1098-1109
-
-
Stadlober, E.1
Hörmann, S.2
Pfeiler, B.3
-
4
-
-
57449100830
-
Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
-
M. Cai, Y. Yin and M. Xie, "Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach," Transp. Res. Part D Transp. Environ. 2009, 14, 32-41.
-
(2009)
Transp. Res. Part D Transp. Environ.
, vol.14
, pp. 32-41
-
-
Cai, M.1
Yin, Y.2
Xie, M.3
-
5
-
-
84936929937
-
Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha
-
W. Liu, W. Li, Z. Chen, G. Zeng, T. León, J. Liang, G. Huang, Z. Gao, S. Jiao, X. He, et al. "Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha," China. Atmos. Environ. 2015, 116, 272-280.
-
(2015)
China. Atmos. Environ.
, vol.116
, pp. 272-280
-
-
Liu, W.1
Li, W.2
Chen, Z.3
Zeng, G.4
León, T.5
Liang, J.6
Huang, G.7
Gao, Z.8
Jiao, S.9
He, X.10
-
6
-
-
79551508219
-
Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management
-
A.K. Paschalidou, S. Karakitsios, S. Kleanthous and P.A. Kassomenos, "Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management," Environ. Sci. Pollut. Res. 2011, 18, 316-327.
-
(2011)
Environ. Sci. Pollut. Res.
, vol.18
, pp. 316-327
-
-
Paschalidou, A.K.1
Karakitsios, S.2
Kleanthous, S.3
Kassomenos, P.A.4
-
8
-
-
17644370689
-
Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning
-
G. Corani, "Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning," Ecol. Model. 2005, 185, 513-529.
-
(2005)
Ecol. Model.
, vol.185
, pp. 513-529
-
-
Corani, G.1
-
9
-
-
84893258740
-
Artificial neural networks forecasting of the PM10 quantity in London considering the Harwell and rochester stoke PM10 measurements
-
M. Popescu, C. Ilie, L. Panaitescu, M.L. Lungu, M. Ilie and D. Lungu, "Artificial neural networks forecasting of the PM10 quantity in London considering the Harwell and Rochester Stoke PM10 measurements," J. Environ. Prot. Ecol. 2013, 14, 1473-1481.
-
(2013)
J. Environ. Prot. Ecol.
, vol.14
, pp. 1473-1481
-
-
Popescu, M.1
Ilie, C.2
Panaitescu, L.3
Lungu, M.L.4
Ilie, M.5
Lungu, D.6
-
10
-
-
84864065954
-
Combined model for PM10 forecasting in a large city
-
P. Perez, "Combined model for PM10 forecasting in a large city," Atmos. Environ. 2012, 60, 271-276.
-
(2012)
Atmos. Environ.
, vol.60
, pp. 271-276
-
-
Perez, P.1
-
11
-
-
3142733594
-
Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air
-
W.Z Lu, W.J. Wang, X.K. Wang, S.H Yan and J.C. Lam, "Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air," Hong Kong. Environ. Res. 2004, 96, 79-87.
-
(2004)
Hong Kong. Environ. Res.
, vol.96
, pp. 79-87
-
-
Lu, W.Z.1
Wang, W.J.2
Wang, X.K.3
Yan, S.H.4
Lam, J.C.5
-
12
-
-
0036718972
-
Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
-
I.G. McKendry, "Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting," J. Air Waste Manag. Assoc. 2002, 52, 1096-1101.
-
(2002)
J. Air Waste Manag. Assoc.
, vol.52
, pp. 1096-1101
-
-
McKendry, I.G.1
-
13
-
-
0141483644
-
Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment
-
A. Chaloulakou, G. Grivas, N. Spyrellis, "Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment," J. Air Waste Manag. Assoc. 2003, 53, 1183-1190.
-
(2003)
J. Air Waste Manag. Assoc.
, vol.53
, pp. 1183-1190
-
-
Chaloulakou, A.1
Grivas, G.2
Spyrellis, N.3
-
14
-
-
9944223325
-
Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)
-
J.B. Ordieres, E.P. Vergara, R.S. Capuz and R. Salazar," Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)," E. Environ. Modell. Softw. 2005, 20, 547-559.
-
(2005)
E. Environ. Modell. Softw.
, vol.20
, pp. 547-559
-
-
Ordieres, J.B.1
Vergara, E.P.2
Capuz, R.S.3
Salazar, R.4
-
15
-
-
35148878380
-
A new cost function for air quality modeling
-
G. Nunnari and F. Cannavo, "A new cost function for air quality modeling," J. VLSI Signal Process. Syst., 2007, 49: 281-290.
-
(2007)
J. VLSI Signal Process. Syst.
, vol.49
, pp. 281-290
-
-
Nunnari, G.1
Cannavo, F.2
-
16
-
-
31044433834
-
Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece
-
middot; March
-
G. Grivas and A. Chaloulakou, "Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece," Atmos. Environ. 40(7):1216-1229 · March 2006
-
(2006)
Atmos. Environ.
, vol.40
, Issue.7
, pp. 1216-1229
-
-
Grivas, G.1
Chaloulakou, A.2
-
17
-
-
84880625711
-
Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models: A case study in Salt, Jordan
-
M. Alkasassbeh, A. F. Sheta, H. Faris and H. Turabieh, "Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan," Middle-East Journal of Scientific Research 14 (7): 999-1009, 2013.
-
(2013)
Middle-East Journal of Scientific Research
, vol.14
, Issue.7
, pp. 999-1009
-
-
Alkasassbeh, M.1
Sheta, A.F.2
Faris, H.3
Turabieh, H.4
-
19
-
-
0034739912
-
Neural networks and periodic components used in air quality forecasting
-
M. Kolehmainen, H. Martikainen and J. Ruuskanen, "Neural networks and periodic components used in air quality forecasting," Atmos. Environ. 2001.35.815-825.
-
(2001)
Atmos. Environ.
, vol.35
, pp. 815-825
-
-
Kolehmainen, M.1
Martikainen, H.2
Ruuskanen, J.3
-
20
-
-
0036180934
-
Prediction of sulpuur dioxide using artificial neural networks
-
A.B. Chelani, R.V. Chalapati Rao, K.M. Phadke and M.Z. Hasan, "Prediction of sulpuur dioxide using artificial neural networks," Environ Model Softw, 17 (2002) 161-168.
-
(2002)
Environ Model Softw
, vol.17
, pp. 161-168
-
-
Chelani, A.B.1
Chalapati Rao, R.V.2
Phadke, K.M.3
Hasan, M.Z.4
-
22
-
-
44749093365
-
An online air pollution forecasting system using neural networks
-
A. Kurt, B. Gulbagci, F. Karaca, O. Alagha, "An online air pollution forecasting system using neural networks," Environment International, 34 (2008), pp. 592-598
-
(2008)
Environment International
, vol.34
, pp. 592-598
-
-
Kurt, A.1
Gulbagci, B.2
Karaca, F.3
Alagha, O.4
-
24
-
-
0036468601
-
Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
-
P. Viotti, G. Liuti and P. Di Genova, "Atmospheric urban pollution: Applications of an Artificial Neural Network (ANN) to the city of Perugia," Ecol. Model., (2002) 148: 27-46.
-
(2002)
Ecol. Model.
, vol.148
, pp. 27-46
-
-
Viotti, P.1
Liuti, G.2
Di Genova, P.3
|