메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Forecasting PM10 concentrations using neural networks and system for improving air quality

Author keywords

air quality; artificial neural network; meteorological variables; modeling; PM10 concentrations; time series forecast

Indexed keywords

AIR QUALITY; FORECASTING; MODELS; NEURAL NETWORKS; TIME SERIES; WIND; WIND EFFECTS;

EID: 85010375910     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIHTEL.2016.7775721     Document Type: Conference Paper
Times cited : (29)

References (24)
  • 2
    • 84959542151 scopus 로고    scopus 로고
    • Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies
    • H. Taheri Shahraiyni and S. Sodoudi, "Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies," Atmosphere 2016, 7, 15; doi:10.3390/atmos7020015
    • (2016) Atmosphere , vol.7 , pp. 15
    • Taheri Shahraiyni, H.1    Sodoudi, S.2
  • 3
    • 38949181014 scopus 로고    scopus 로고
    • Quality and performance of a PM10 daily forecasting model
    • E. Stadlober, S. Hörmann and B. Pfeiler, "Quality and performance of a PM10 daily forecasting model," Atmos. Environ. 2008, 42, 1098-1109.
    • (2008) Atmos. Environ. , vol.42 , pp. 1098-1109
    • Stadlober, E.1    Hörmann, S.2    Pfeiler, B.3
  • 4
    • 57449100830 scopus 로고    scopus 로고
    • Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
    • M. Cai, Y. Yin and M. Xie, "Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach," Transp. Res. Part D Transp. Environ. 2009, 14, 32-41.
    • (2009) Transp. Res. Part D Transp. Environ. , vol.14 , pp. 32-41
    • Cai, M.1    Yin, Y.2    Xie, M.3
  • 5
    • 84936929937 scopus 로고    scopus 로고
    • Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha
    • W. Liu, W. Li, Z. Chen, G. Zeng, T. León, J. Liang, G. Huang, Z. Gao, S. Jiao, X. He, et al. "Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha," China. Atmos. Environ. 2015, 116, 272-280.
    • (2015) China. Atmos. Environ. , vol.116 , pp. 272-280
    • Liu, W.1    Li, W.2    Chen, Z.3    Zeng, G.4    León, T.5    Liang, J.6    Huang, G.7    Gao, Z.8    Jiao, S.9    He, X.10
  • 6
    • 79551508219 scopus 로고    scopus 로고
    • Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management
    • A.K. Paschalidou, S. Karakitsios, S. Kleanthous and P.A. Kassomenos, "Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management," Environ. Sci. Pollut. Res. 2011, 18, 316-327.
    • (2011) Environ. Sci. Pollut. Res. , vol.18 , pp. 316-327
    • Paschalidou, A.K.1    Karakitsios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 8
    • 17644370689 scopus 로고    scopus 로고
    • Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning
    • G. Corani, "Air quality prediction in Milan: Feed-forward neural networks, pruned neural networks and lazy learning," Ecol. Model. 2005, 185, 513-529.
    • (2005) Ecol. Model. , vol.185 , pp. 513-529
    • Corani, G.1
  • 9
    • 84893258740 scopus 로고    scopus 로고
    • Artificial neural networks forecasting of the PM10 quantity in London considering the Harwell and rochester stoke PM10 measurements
    • M. Popescu, C. Ilie, L. Panaitescu, M.L. Lungu, M. Ilie and D. Lungu, "Artificial neural networks forecasting of the PM10 quantity in London considering the Harwell and Rochester Stoke PM10 measurements," J. Environ. Prot. Ecol. 2013, 14, 1473-1481.
    • (2013) J. Environ. Prot. Ecol. , vol.14 , pp. 1473-1481
    • Popescu, M.1    Ilie, C.2    Panaitescu, L.3    Lungu, M.L.4    Ilie, M.5    Lungu, D.6
  • 10
    • 84864065954 scopus 로고    scopus 로고
    • Combined model for PM10 forecasting in a large city
    • P. Perez, "Combined model for PM10 forecasting in a large city," Atmos. Environ. 2012, 60, 271-276.
    • (2012) Atmos. Environ. , vol.60 , pp. 271-276
    • Perez, P.1
  • 11
    • 3142733594 scopus 로고    scopus 로고
    • Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air
    • W.Z Lu, W.J. Wang, X.K. Wang, S.H Yan and J.C. Lam, "Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air," Hong Kong. Environ. Res. 2004, 96, 79-87.
    • (2004) Hong Kong. Environ. Res. , vol.96 , pp. 79-87
    • Lu, W.Z.1    Wang, W.J.2    Wang, X.K.3    Yan, S.H.4    Lam, J.C.5
  • 12
    • 0036718972 scopus 로고    scopus 로고
    • Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting
    • I.G. McKendry, "Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting," J. Air Waste Manag. Assoc. 2002, 52, 1096-1101.
    • (2002) J. Air Waste Manag. Assoc. , vol.52 , pp. 1096-1101
    • McKendry, I.G.1
  • 13
    • 0141483644 scopus 로고    scopus 로고
    • Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment
    • A. Chaloulakou, G. Grivas, N. Spyrellis, "Neural network and multiple regression models for PM10 prediction in Athens: A comparative assessment," J. Air Waste Manag. Assoc. 2003, 53, 1183-1190.
    • (2003) J. Air Waste Manag. Assoc. , vol.53 , pp. 1183-1190
    • Chaloulakou, A.1    Grivas, G.2    Spyrellis, N.3
  • 14
    • 9944223325 scopus 로고    scopus 로고
    • Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)
    • J.B. Ordieres, E.P. Vergara, R.S. Capuz and R. Salazar," Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)," E. Environ. Modell. Softw. 2005, 20, 547-559.
    • (2005) E. Environ. Modell. Softw. , vol.20 , pp. 547-559
    • Ordieres, J.B.1    Vergara, E.P.2    Capuz, R.S.3    Salazar, R.4
  • 15
    • 35148878380 scopus 로고    scopus 로고
    • A new cost function for air quality modeling
    • G. Nunnari and F. Cannavo, "A new cost function for air quality modeling," J. VLSI Signal Process. Syst., 2007, 49: 281-290.
    • (2007) J. VLSI Signal Process. Syst. , vol.49 , pp. 281-290
    • Nunnari, G.1    Cannavo, F.2
  • 16
    • 31044433834 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece
    • middot; March
    • G. Grivas and A. Chaloulakou, "Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece," Atmos. Environ. 40(7):1216-1229 · March 2006
    • (2006) Atmos. Environ. , vol.40 , Issue.7 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 17
    • 84880625711 scopus 로고    scopus 로고
    • Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models: A case study in Salt, Jordan
    • M. Alkasassbeh, A. F. Sheta, H. Faris and H. Turabieh, "Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan," Middle-East Journal of Scientific Research 14 (7): 999-1009, 2013.
    • (2013) Middle-East Journal of Scientific Research , vol.14 , Issue.7 , pp. 999-1009
    • Alkasassbeh, M.1    Sheta, A.F.2    Faris, H.3    Turabieh, H.4
  • 19
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • M. Kolehmainen, H. Martikainen and J. Ruuskanen, "Neural networks and periodic components used in air quality forecasting," Atmos. Environ. 2001.35.815-825.
    • (2001) Atmos. Environ. , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 22
    • 44749093365 scopus 로고    scopus 로고
    • An online air pollution forecasting system using neural networks
    • A. Kurt, B. Gulbagci, F. Karaca, O. Alagha, "An online air pollution forecasting system using neural networks," Environment International, 34 (2008), pp. 592-598
    • (2008) Environment International , vol.34 , pp. 592-598
    • Kurt, A.1    Gulbagci, B.2    Karaca, F.3    Alagha, O.4
  • 24
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
    • P. Viotti, G. Liuti and P. Di Genova, "Atmospheric urban pollution: Applications of an Artificial Neural Network (ANN) to the city of Perugia," Ecol. Model., (2002) 148: 27-46.
    • (2002) Ecol. Model. , vol.148 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Di Genova, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.