-
3
-
-
84885988397
-
2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
-
2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6 (2013), 3112–3135.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3112-3135
-
-
Kondratenko, E.V.1
Mul, G.2
Baltrusaitis, J.3
Larrazabal, G.O.4
Perez-Ramirez, J.5
-
7
-
-
84919684012
-
6 heterostructured nanofibers prepared by electrospinning technique
-
6 heterostructured nanofibers prepared by electrospinning technique. RSC Adv. 5 (2015), 4077–4082.
-
(2015)
RSC Adv.
, vol.5
, pp. 4077-4082
-
-
Liu, X.N.1
Lu, Q.F.2
Zhu, C.F.3
Liu, S.W.4
-
12
-
-
84935036372
-
6 microspheres: synthesis, photoinduced charge transfer properties and photocatalytic activities
-
6 microspheres: synthesis, photoinduced charge transfer properties and photocatalytic activities. Dalton Trans. 44 (2015), 11725–11731.
-
(2015)
Dalton Trans.
, vol.44
, pp. 11725-11731
-
-
Fan, H.1
Wang, D.2
Liu, Z.3
-
13
-
-
80053483649
-
6 inverse opals: facile fabrication and efficient visible light-driven photocatalytic and photoelectrochemical water-splitting activity
-
6 inverse opals: facile fabrication and efficient visible light-driven photocatalytic and photoelectrochemical water-splitting activity. Small 7 (2011), 2714–2720.
-
(2011)
Small
, vol.7
, pp. 2714-2720
-
-
Zhang, L.W.1
Baumanis, C.2
Robben, L.3
Kandiel, T.4
Bahnemann, D.5
-
14
-
-
84866263422
-
2 to methanol
-
2 to methanol. Chem. Commun. 48 (2012), 9729–9731.
-
(2012)
Chem. Commun.
, vol.48
, pp. 9729-9731
-
-
Cheng, H.F.1
Huang, B.B.2
Liu, Y.Y.3
Wang, Z.Y.4
Qin, X.Y.5
Zhang, X.Y.6
Dai, Y.7
-
15
-
-
84922769790
-
6 synthesized without organic precursor: effect of post-calcination and water vapor
-
6 synthesized without organic precursor: effect of post-calcination and water vapor. Appl. Surf. Sci. 315 (2014), 360–367.
-
(2014)
Appl. Surf. Sci.
, vol.315
, pp. 360-367
-
-
Sun, Z.X.1
Yang, Z.M.2
Liu, H.F.3
Wang, H.Q.4
-
16
-
-
84862833037
-
2 into renewable hydrocarbon fuel under visible light
-
2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 3 (2011), 3594–3601.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 3594-3601
-
-
Zhou, Y.1
Tian, Z.P.2
Zhao, Z.Y.3
Liu, Q.4
Kou, J.H.5
Chen, X.Y.6
Gao, J.7
Yan, S.C.8
Zou, Z.G.9
-
18
-
-
84886704638
-
3 nanoparticles: an efficient method to improve visible light-driven photocatalytic activity
-
3 nanoparticles: an efficient method to improve visible light-driven photocatalytic activity. CrystEngComm 15 (2013), 9011–9019.
-
(2013)
CrystEngComm
, vol.15
, pp. 9011-9019
-
-
Wang, H.L.1
Li, S.J.2
Zhang, L.S.3
Chen, Z.G.4
Hu, J.Q.5
Zou, R.J.6
Xu, K.B.7
Song, G.S.8
Zhao, H.H.9
Yang, J.M.10
Liu, J.S.11
-
20
-
-
84899409976
-
2 hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide
-
2 hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide. Green Chem. 16 (2014), 2539–2545.
-
(2014)
Green Chem.
, vol.16
, pp. 2539-2545
-
-
Guo, H.1
Guo, Y.2
Liu, L.3
-
23
-
-
84869074729
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
-
[23] Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 (2012), 699–712.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 699-712
-
-
Wang, Q.H.1
Kalantar-Zadeh, K.2
Kis, A.3
Coleman, J.N.4
Strano, M.S.5
-
25
-
-
84922604507
-
4 for enhanced photocatalytic activity
-
4 for enhanced photocatalytic activity. Dalton Trans. 44 (2015), 3057–3066.
-
(2015)
Dalton Trans.
, vol.44
, pp. 3057-3066
-
-
Song, Y.H.1
Lei, Y.C.2
Xu, H.3
Wang, C.4
Yan, J.5
Zhao, H.Z.6
Xu, Y.G.7
Xia, J.X.8
Yin, S.9
Li, H.M.10
-
26
-
-
84903649482
-
4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light
-
4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale 6 (2014), 8311–8317.
-
(2014)
Nanoscale
, vol.6
, pp. 8311-8317
-
-
Peng, W.C.1
Wang, X.2
Li, X.Y.3
-
27
-
-
85027933230
-
2 production activity of multiarmed CdS nanorods
-
2 production activity of multiarmed CdS nanorods. ChemCatChem 7 (2015), 943–951.
-
(2015)
ChemCatChem
, vol.7
, pp. 943-951
-
-
Lang, D.1
Shen, T.T.2
Xiang, Q.J.3
-
28
-
-
84907502796
-
2 nanofibers for highly efficient photocatalytic hydrogen evolution
-
2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 164 (2015), 1–9.
-
(2015)
Appl. Catal. B: Environ.
, vol.164
, pp. 1-9
-
-
Liu, C.B.1
Wang, L.L.2
Tang, Y.H.3
Luo, S.L.4
Liu, Y.T.5
Zhang, S.Q.6
Zeng, Y.X.7
Xu, Y.Z.8
-
29
-
-
26444595544
-
Solution syntheses of unsupported Co(Ni)-Mo-S hydrotreating catalysts
-
[29] Genuit, D., Afanasiev, P., Vrinat, M., Solution syntheses of unsupported Co(Ni)-Mo-S hydrotreating catalysts. J. Catal. 235 (2005), 302–317.
-
(2005)
J. Catal.
, vol.235
, pp. 302-317
-
-
Genuit, D.1
Afanasiev, P.2
Vrinat, M.3
-
31
-
-
84970006630
-
2 into solar fuels under visible light
-
2 into solar fuels under visible light. CrystEngComm 18 (2016), 3472–3480.
-
(2016)
CrystEngComm
, vol.18
, pp. 3472-3480
-
-
Dai, W.L.1
Yu, J.J.2
Xu, H.3
-
32
-
-
84901462379
-
Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide
-
[32] Weng, B., Yang, M.Q., Zhang, N., Xu, Y.J., Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J. Mater. Chem. A 2 (2014), 9380–9389.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9380-9389
-
-
Weng, B.1
Yang, M.Q.2
Zhang, N.3
Xu, Y.J.4
-
34
-
-
69149103326
-
6 nanofibrous mat prepared by electrospinning
-
6 nanofibrous mat prepared by electrospinning. J. Mater. Chem. 19 (2009), 6213–6218.
-
(2009)
J. Mater. Chem.
, vol.19
, pp. 6213-6218
-
-
Shang, M.1
Wang, W.2
Ren, J.3
-
35
-
-
81855198056
-
6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities
-
6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities. CrystEngComm 13 (2011), 7267–7275.
-
(2011)
CrystEngComm
, vol.13
, pp. 7267-7275
-
-
Xu, L.1
Yang, X.2
Zhai, Z.3
-
36
-
-
34548748678
-
6 nano- and microstructures: shape control and associated visible light-driven photocatalytic activities
-
6 nano- and microstructures: shape control and associated visible light-driven photocatalytic activities. Small 3 (2007), 1618–1625.
-
(2007)
Small
, vol.3
, pp. 1618-1625
-
-
Zhang, L.1
Wang, W.2
Zhou, L.3
Xu, H.4
-
39
-
-
84927729652
-
3 discoids: synthesis, formation mechanism, and photocatalytic application
-
3 discoids: synthesis, formation mechanism, and photocatalytic application. Langmuir 31 (2015), 4314–4322.
-
(2015)
Langmuir
, vol.31
, pp. 4314-4322
-
-
Weng, B.1
Zhang, X.2
Zhang, N.3
Tang, Z.R.4
Xu, Y.J.5
-
44
-
-
84904438276
-
2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects
-
2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26 (2014), 4607–4626.
-
(2014)
Adv. Mater.
, vol.26
, pp. 4607-4626
-
-
Tu, W.G.1
Zhou, Y.2
Zou, Z.G.3
-
45
-
-
55849093644
-
x solid solutions and photocatalytic properties under visible light irradiation
-
x solid solutions and photocatalytic properties under visible light irradiation. Phys. Chem. Chem. Phys. 10 (2008), 6717–6723.
-
(2008)
Phys. Chem. Chem. Phys.
, vol.10
, pp. 6717-6723
-
-
Luo, W.J.1
Li, Z.S.2
Jiang, X.J.3
Yu, T.4
Liu, L.F.5
Chen, X.Y.6
Ye, J.H.7
Zou, Z.G.8
-
48
-
-
84896786400
-
Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light
-
[48] Shang, J., Hao, W.C., Lv, X.J., Wang, T.M., Wang, X.L., Du, Y., Dou, S.X., Xie, T.F., Wang, D.J., Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catal. 4 (2014), 954–961.
-
(2014)
ACS Catal.
, vol.4
, pp. 954-961
-
-
Shang, J.1
Hao, W.C.2
Lv, X.J.3
Wang, T.M.4
Wang, X.L.5
Du, Y.6
Dou, S.X.7
Xie, T.F.8
Wang, D.J.9
|