메뉴 건너뛰기




Volumn 13, Issue 1, 2017, Pages

Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data

Author keywords

Bayes B; Fourier regression; Genome selection; Prediction accuracy; Spectral data; Spline regression; Vegetation indexes; Wheat

Indexed keywords


EID: 85010210779     PISSN: None     EISSN: 17464811     Source Type: Journal    
DOI: 10.1186/s13007-016-0154-2     Document Type: Article
Times cited : (119)

References (31)
  • 1
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: the new crop breeding frontier
    • Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19(1):52-61.
    • (2014) Trends Plant Sci , vol.19 , Issue.1 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 3
    • 0036323088 scopus 로고    scopus 로고
    • Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture
    • Boegh E, Soegaard H, Broge N, Hasager CB, Jensen NO, Schelde K, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens Environ. 2002;81:179-93.
    • (2002) Remote Sens Environ , vol.81 , pp. 179-193
    • Boegh, E.1    Soegaard, H.2    Broge, N.3    Hasager, C.B.4    Jensen, N.O.5    Schelde, K.6
  • 4
    • 0036259365 scopus 로고    scopus 로고
    • Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data
    • Broge NH, Mortensen JV. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ. 2002;81:45-57.
    • (2002) Remote Sens Environ , vol.81 , pp. 45-57
    • Broge, N.H.1    Mortensen, J.V.2
  • 5
    • 0024855907 scopus 로고
    • The application of a weighted infrared-red vegetation index for estimating leaf-area index by correcting for soil-moisture
    • Clevers JGPW. The application of a weighted infrared-red vegetation index for estimating leaf-area index by correcting for soil-moisture. Remote Sens Environ. 1989;29:25-37.
    • (1989) Remote Sens Environ , vol.29 , pp. 25-37
    • Clevers, J.G.P.W.1
  • 7
    • 0038606455 scopus 로고    scopus 로고
    • Retrieval of leaf area index in different vegetation types using high resolution satellite data
    • Colombo R, Bellingeri D, Fasolini D, Marino CM. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ. 2003;86:120-31.
    • (2003) Remote Sens Environ , vol.86 , pp. 120-131
    • Colombo, R.1    Bellingeri, D.2    Fasolini, D.3    Marino, C.M.4
  • 8
    • 0020968752 scopus 로고
    • Estimating green LAI from multispectral aerial-photography
    • Curran PJ. Estimating green LAI from multispectral aerial-photography. Photogramm Eng Remote Sens. 1983;49:1709-20.
    • (1983) Photogramm Eng Remote Sens , vol.49 , pp. 1709-1720
    • Curran, P.J.1
  • 9
    • 0021032148 scopus 로고
    • Multispectral remote-sensing for the estimation of green leaf area index
    • Curran PJ. Multispectral remote-sensing for the estimation of green leaf area index. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 1983;309:257-70.
    • (1983) Philos Trans R Soc Lond Ser A Math Phys Eng Sci , vol.309 , pp. 257-270
    • Curran, P.J.1
  • 10
    • 84970622980 scopus 로고    scopus 로고
    • Introduction to quantitative genetics
    • Harlow: Longman
    • Falconer DS, Mackay TFC. Introduction to quantitative genetics. Harlow: Longman; 1996.
    • (1996)
    • Falconer, D.S.1    Mackay, T.F.C.2
  • 11
    • 84868156165 scopus 로고    scopus 로고
    • Statistical computing in functional data analysis: the R package fda. usc
    • Febrero-Bande M, Oviedo de la Fuente M. Statistical computing in functional data analysis: the R package fda. usc. J Stat Softw. 2012;51(4):1-28.
    • (2012) J Stat Softw , vol.51 , Issue.4 , pp. 1-28
    • Febrero-Bande, M.1    Oviedo de la Fuente, M.2
  • 12
    • 84944051195 scopus 로고    scopus 로고
    • Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data
    • Ferragina A, de Los Campos G, Vazquez AI, Cecchinato A, Bittante G. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J Dairy Sci. 2015;98(11):8133-51.
    • (2015) J Dairy Sci , vol.98 , Issue.11 , pp. 8133-8151
    • Ferragina, A.1    Los Campos, G.2    Vazquez, A.I.3    Cecchinato, A.4    Bittante, G.5
  • 13
    • 0033563959 scopus 로고    scopus 로고
    • Designing optimal spectral indices: a feasibility and proof of concept study
    • Govaerts YM, Verstraete MM, Pinty B, Gobron N. Designing optimal spectral indices: a feasibility and proof of concept study. Int J Remote Sens. 1999;20:1853-73.
    • (1999) Int J Remote Sens , vol.20 , pp. 1853-1873
    • Govaerts, Y.M.1    Verstraete, M.M.2    Pinty, B.3    Gobron, N.4
  • 14
    • 84928813718 scopus 로고    scopus 로고
    • Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes
    • Hernandez J, Lobos GA, Matus I, del Pozo A, Silva P, Galleguillos M. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes. Remote Sens. 2015;7(2):2109-26.
    • (2015) Remote Sens , vol.7 , Issue.2 , pp. 2109-2126
    • Hernandez, J.1    Lobos, G.A.2    Matus, I.3    Pozo, A.4    Silva, P.5    Galleguillos, M.6
  • 15
    • 0037057555 scopus 로고    scopus 로고
    • Wheat yield estimates using multi-temporal NDVI satellite imagery
    • Labus M, Nielsen G, Lawrence R, Engel R, Long D. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int J Remote Sens. 2002;23:4169-80.
    • (2002) Int J Remote Sens , vol.23 , pp. 4169-4180
    • Labus, M.1    Nielsen, G.2    Lawrence, R.3    Engel, R.4    Long, D.5
  • 16
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078-111.
    • (2014) Sensors , vol.14 , Issue.11 , pp. 20078-20111
    • Li, L.1    Zhang, Q.2    Huang, D.3
  • 17
    • 84930923096 scopus 로고    scopus 로고
    • Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress
    • Mason RE, Singh RP. Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress. Agronomy. 2014;4:191-201.
    • (2014) Agronomy , vol.4 , pp. 191-201
    • Mason, R.E.1    Singh, R.P.2
  • 19
    • 84881503199 scopus 로고    scopus 로고
    • Physiological breeding II: a field guide to wheat phenotyping
    • Mexico: CIMMYT
    • Pask AJD, Pietragalla J, Mullan DM, Reynolds MP. Physiological breeding II: a field guide to wheat phenotyping. Mexico: CIMMYT; 2012.
    • (2012)
    • Pask, A.J.D.1    Pietragalla, J.2    Mullan, D.M.3    Reynolds, M.P.4
  • 20
    • 85010198294 scopus 로고    scopus 로고
    • BGLR: a statistical package for whole genome regression and prediction
    • R package version 1. 0.2.
    • Pérez P, de los Campos G. BGLR: a statistical package for whole genome regression and prediction. R package version 1. 0.2. 2013.
    • (2013)
    • Pérez, P.1    de los Campos, G.2
  • 21
    • 0027806383 scopus 로고
    • Towards a quantitative interpretation of spectral vegetation indexes
    • Pinty B, Leprieur C, Verstraete MM. Towards a quantitative interpretation of spectral vegetation indexes. Remote Sens Rev. 1993;7:127-50.
    • (1993) Remote Sens Rev , vol.7 , pp. 127-150
    • Pinty, B.1    Leprieur, C.2    Verstraete, M.M.3
  • 22
    • 0027334401 scopus 로고
    • The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction
    • Quarmby N, Milnes M, Hindle T, Silleos N. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int J Remote Sens. 1993;14:199-210.
    • (1993) Int J Remote Sens , vol.14 , pp. 199-210
    • Quarmby, N.1    Milnes, M.2    Hindle, T.3    Silleos, N.4
  • 23
    • 0038524930 scopus 로고    scopus 로고
    • Applied functional data analysis: methods and case studies
    • New York: Springer
    • Ramsay JO, Silverman BW. Applied functional data analysis: methods and case studies, vol. 77. New York: Springer; 2002.
    • (2002) , vol.77
    • Ramsay, J.O.1    Silverman, B.W.2
  • 24
    • 0242585694 scopus 로고
    • Canopy temperatures of wheat: relationships with yield and potential as a technique for early generation selection
    • Mexico: CIMMYT
    • Rees D, Sayre K, Acevedo E, Nava Sanchez T, Lu Z, Zeiger E, et al. Canopy temperatures of wheat: relationships with yield and potential as a technique for early generation selection. Mexico: CIMMYT; 1993.
    • (1993)
    • Rees, D.1    Sayre, K.2    Acevedo, E.3    Nava Sanchez, T.4    Lu, Z.5    Zeiger, E.6
  • 25
    • 84994235616 scopus 로고    scopus 로고
    • Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for yield in wheat
    • G3:Genes|Genomes|Genetics (accepted)
    • Rutkoski J, Poland J, Mondal S, Autrique E, Crossa J, Reynolds MP, Singh RP. Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for yield in wheat. G3:Genes|Genomes|Genetics (accepted). 2016.
    • (2016)
    • Rutkoski, J.1    Poland, J.2    Mondal, S.3    Autrique, E.4    Crossa, J.5    Reynolds, M.P.6    Singh, R.P.7
  • 26
    • 0037379823 scopus 로고    scopus 로고
    • Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features
    • Sims DA, Gamon JA. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ. 2003;84(4):526-37.
    • (2003) Remote Sens Environ , vol.84 , Issue.4 , pp. 526-537
    • Sims, D.A.1    Gamon, J.A.2
  • 28
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979;8:127-50.
    • (1979) Remote Sens Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 29
    • 81355146796 scopus 로고    scopus 로고
    • Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
    • Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ. 2011;115(12):3468-78.
    • (2011) Remote Sens Environ , vol.115 , Issue.12 , pp. 3468-3478
    • Viña, A.1    Gitelson, A.A.2    Nguy-Robertson, A.L.3    Peng, Y.4
  • 30
    • 79952476380 scopus 로고    scopus 로고
    • High throughput sensing of aerial biomass and above-ground nitrogen uptake in the vegetative stage of well-watered and drought stressed tropical maize hybrids
    • Winterhalter L, Mistele B, Jampatong S, Schmidhalter U. High throughput sensing of aerial biomass and above-ground nitrogen uptake in the vegetative stage of well-watered and drought stressed tropical maize hybrids. Crop Sci. 2011;51:479-89.
    • (2011) Crop Sci , vol.51 , pp. 479-489
    • Winterhalter, L.1    Mistele, B.2    Jampatong, S.3    Schmidhalter, U.4
  • 31
    • 0037144628 scopus 로고    scopus 로고
    • Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields
    • Xiao X, He L, Salas W, Li C, Moore B, Zhao R, et al. Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields. Int J Remote Sens. 2002;23:3595-604.
    • (2002) Int J Remote Sens , vol.23 , pp. 3595-3604
    • Xiao, X.1    He, L.2    Salas, W.3    Li, C.4    Moore, B.5    Zhao, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.