-
1
-
-
0001246003
-
Branching theorems for semisimple Lie groups of real rank one
-
MR 83a:22012
-
M. W. Baldoni Silva, Branching theorems for semisimple Lie groups of real rank one, Rend. Sem. Math. Univ. Padova 61 (1979), 229–250. MR 83a:22012
-
(1979)
Rend. Sem. Math. Univ. Padova
, vol.61
, pp. 229-250
-
-
Baldoni Silva, M.W.1
-
2
-
-
33646406314
-
Structure of representations generated by highest weight vectors
-
I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Structure of representations generated by highest weight vectors, Funct. Anal. and Its Appl. 5 (1971), 1–8.
-
(1971)
Funct. Anal. And Its Appl.
, vol.5
, pp. 1-8
-
-
Bernstein, I.N.1
Gelfand, I.M.2
Gelfand, S.I.3
-
3
-
-
0004183465
-
-
North-Holland, Amsterdam, second English edition, 1970, MR 42:7792
-
H. Boerner, Representations of Groups, North-Holland, Amsterdam, 1963, second English edition, 1970. MR 42:7792
-
(1963)
Representations of Groups
-
-
Boerner, H.1
-
4
-
-
0011575674
-
On H. Weyl’s character formula
-
MR 26:3828
-
P. Cartier, On H. Weyl’s character formula, Bull. Amer. Math. Soc. 67 (1961), 228–230. MR 26:3828
-
(1961)
Bull. Amer. Math. Soc
, vol.67
, pp. 228-230
-
-
Cartier, P.1
-
5
-
-
36849113677
-
General formula to derive branching rules
-
MR 42:5529
-
A. van Daele, General formula to derive branching rules, J. Math. Physics 11 (1970), 3275–3282. MR 42:5529
-
(1970)
J. Math. Physics
, vol.11
, pp. 3275-3282
-
-
Van Daele, A.1
-
6
-
-
0009202978
-
Canonical solution of the state labelling problem for SU(N) ⊃ SO(n) and Littlewood’s branching rule I
-
MR 85b:81071
-
J. Deenen and C. Quesne, Canonical solution of the state labelling problem for SU(n) ⊃ SO(n) and Littlewood’s branching rule I, J. Phys. A 16 (1983), 2095–2104. MR 85b:81071
-
(1983)
J. Phys. A
, vol.16
, pp. 2095-2104
-
-
Deenen, J.1
Quesne, C.2
-
7
-
-
84968469606
-
A theory of Stiefel harmonics
-
MR 54:13474
-
S. S. Gelbart, A theory of Stiefel harmonics, Trans. Amer. Math. Soc. 192 (1974), 29–50. MR 54:13474
-
(1974)
Trans. Amer. Math. Soc
, vol.192
, pp. 29-50
-
-
Gelbart, S.S.1
-
8
-
-
0000834650
-
Finite-dimensional representations of the group of uni-modular matrices (Russian)
-
MR 12:9j
-
I. M. Gelfand and M. L. Cetlin, Finite-dimensional representations of the group of uni-modular matrices (Russian), Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828. MR 12:9j
-
(1950)
Doklady Akad. Nauk SSSR (N.S.)
, vol.71
, pp. 825-828
-
-
Gelfand, I.M.1
Cetlin, M.L.2
-
11
-
-
0009327299
-
Branching theorem for the symplectic groups
-
MR 37:339
-
G. C. Hegerfeldt, Branching theorem for the symplectic groups, J. Mathematical Phys. 8 (1967), 1195–1196. MR 37:339
-
(1967)
J. Mathematical Phys
, vol.8
, pp. 1195-1196
-
-
Hegerfeldt, G.C.1
-
12
-
-
0346669543
-
A duality for symmetric spaces with applications to group representations
-
MR 41:8587
-
S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154. MR 41:8587
-
(1970)
Advances in Math
, vol.5
, pp. 1-154
-
-
Helgason, S.1
-
13
-
-
33646848613
-
A note on branching theorems
-
MR 2001e:17018
-
K. D. Johnson, A note on branching theorems, Proc. Amer. Math. Soc. 129 (2001), 351–353. MR 2001e:17018
-
(2001)
Proc. Amer. Math. Soc
, vol.129
, pp. 351-353
-
-
Johnson, K.D.1
-
15
-
-
0002320088
-
A formula for the multiplicity of a weight
-
MR 22:80
-
B. Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 (1959), 53–73. MR 22:80
-
(1959)
Trans. Amer. Math. Soc
, vol.93
, pp. 53-73
-
-
Kostant, B.1
-
16
-
-
85009746208
-
On the branching theorem of the symplectic groups
-
MR 56:5796
-
C. Y. Lee, On the branching theorem of the symplectic groups, Canad. Math. Bull. 17 (1974), 535–545. MR 56:5796
-
(1974)
Canad. Math. Bull
, vol.17
, pp. 535-545
-
-
Lee, C.Y.1
-
17
-
-
0039426945
-
Multiplicity formulas for certain semisimple Lie groups
-
MR 46:300
-
J. Lepowsky, Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc. 77 (1971), 601–605. MR 46:300
-
(1971)
Bull. Amer. Math. Soc
, vol.77
, pp. 601-605
-
-
Lepowsky, J.1
-
18
-
-
0002652806
-
Characters of representations and paths in h ∗ R, Representation Theory and Automorphic Forms
-
P. Littlemann, Characters of representations and paths in h ∗ R, Representation Theory and Automorphic Forms, Proc. Symp. Pure Math., vol. 61, 1997, pp. 29–49.
-
(1997)
Proc. Symp. Pure Math.
, vol.61
, pp. 29-49
-
-
Littlemann, P.1
-
19
-
-
0003797828
-
-
Oxford University Press, New York, 1940, second edition, MR 2:3a
-
D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940, second edition, 1950. MR 2:3a
-
(1950)
The Theory of Group Characters and Matrix Representations of Groups
-
-
Littlewood, D.E.1
-
21
-
-
0040464907
-
The universal form of the branching rule for the symplectic groups
-
MR 95j:20040
-
M. Maliakas, The universal form of the branching rule for the symplectic groups, J. Alge-bra 168 (1994), 221–248. MR 95j:20040
-
(1994)
J. Alge-Bra
, vol.168
, pp. 221-248
-
-
Maliakas, M.1
-
23
-
-
0041066475
-
Modification rules for the orthogonal and symplectic groups
-
MR 13:204e
-
M. J. Newell, Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A 54 (1951), 153–163. MR 13:204e
-
(1951)
Proc. Roy. Irish Acad. Sect. A
, vol.54
, pp. 153-163
-
-
Newell, M.J.1
-
24
-
-
42149197173
-
Branching rules for representations of simple Lie algebras through Weyl group orbit reduction
-
MR 90h:17009
-
J. Patera and R. T. Sharp, Branching rules for representations of simple Lie algebras through Weyl group orbit reduction, J. Phys. A 22 (1989), 2329–2340. MR 90h:17009
-
(1989)
J. Phys. A
, vol.22
, pp. 2329-2340
-
-
Patera, J.1
Sharp, R.T.2
-
25
-
-
38149147728
-
Young tableaux, Gelfand patterns, and branching rules for classical groups
-
MR 96e:05180
-
R. A. Proctor, Young tableaux, Gelfand patterns, and branching rules for classical groups, J. Algebra 164 (1994), 299–360. MR 96e:05180
-
(1994)
J. Algebra
, vol.164
, pp. 299-360
-
-
Proctor, R.A.1
-
26
-
-
0009203993
-
Canonical solution of the state labelling problem for SU(N) ⊃ SO(n) and Littlewood’s branching rule II
-
MR 85i:81050a
-
C. Quesne, Canonical solution of the state labelling problem for SU(n) ⊃ SO(n) and Littlewood’s branching rule II, J. Phys. A 17 (1984), 777–789. MR 85i:81050a
-
(1984)
J. Phys. A
, vol.17
, pp. 777-789
-
-
Quesne, C.1
-
27
-
-
0002851961
-
Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen
-
MR 41:3806
-
W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61–80. MR 41:3806
-
(1969)
Invent. Math.
, vol.9
, pp. 61-80
-
-
Schmid, W.1
-
28
-
-
84966228910
-
A general Clebsch-Gordon theorem
-
MR 23:A3804
-
R. Steinberg, A general Clebsch-Gordon theorem, Bull. Amer. Math. Soc. 67 (1961), 406–407. MR 23:A3804
-
(1961)
Bull. Amer. Math. Soc
, vol.67
, pp. 406-407
-
-
Steinberg, R.1
-
29
-
-
0041487099
-
Lie algebra cohomology and a multiplicity formula of Kostant
-
MR 81e:22027
-
D. A. Vogan, Lie algebra cohomology and a multiplicity formula of Kostant, J. Algebra 51 (1978), 69–75. MR 81e:22027
-
(1978)
J. Algebra
, vol.51
, pp. 69-75
-
-
Vogan, D.A.1
-
30
-
-
0004159929
-
-
Methuen and Co., Ltd., London, 1931, reprinted Dover Publications, Inc., New York
-
H. Weyl, The Theory of Groups and Quantum Mechanics, Methuen and Co., Ltd., London, 1931, reprinted Dover Publications, Inc., New York, 1950.
-
(1950)
The Theory of Groups and Quantum Mechanics
-
-
Weyl, H.1
-
31
-
-
0002671512
-
The classical groups. Spectral analysis of their finite-dimensional rep-resentations
-
D. P. Zhelobenko, The classical groups. Spectral analysis of their finite-dimensional rep-resentations, Russian Math. Surveys 17 (1962), 1–94.
-
(1962)
Russian Math. Surveys
, vol.17
, pp. 1-94
-
-
Zhelobenko, D.P.1
|