-
1
-
-
0035535918
-
Penultimate approximation for Hill’s estimator
-
MR1858418 (2002h:62156)
-
S. Cheng and L. de Haan, Penultimate approximation for Hill’s estimator, Scand. J. Statist. 28 (2001), 569–575.MR1858418 (2002h:62156)
-
(2001)
Scand. J. Statist
, vol.28
, pp. 569-575
-
-
Cheng, S.1
De Haan, L.2
-
2
-
-
0032339702
-
Asymptotic expansions of estimators for the tail index with applications
-
MR1666796 (2000d:62079)
-
S. Cheng and J. Pan, Asymptotic expansions of estimators for the tail index with applications, Scand. J. Statist. 25 (1998), 717–728.MR1666796 (2000d:62079)
-
(1998)
Scand. J. Statist
, vol.25
, pp. 717-728
-
-
Cheng, S.1
Pan, J.2
-
3
-
-
85009830532
-
-
Discussion paper from Tilburg University, Center for Economic Research
-
A. Cuntz, E. Haeusler, and J. Segers, Edgeworth expansions for the distribution function of the Hill estimator, Discussion paper from Tilburg University, Center for Economic Research (2003), no. 8.
-
(2003)
Edgeworth Expansions for the Distribution Function of the Hill Estimator
, Issue.8
-
-
Cuntz, A.1
Haeusler, E.2
Segers, J.3
-
4
-
-
0003032284
-
Slow variation and characterization of domains of attraction
-
Vimeiro, Reidel, Dordrecht, 1984, MR784812 (87b:60036)
-
L. de Haan, Slow variation and characterization of domains of attraction, Statistical Extremes and Applications, Vimeiro, 1983, Reidel, Dordrecht, 1984, pp. 31–48.MR784812 (87b:60036)
-
(1983)
Statistical Extremes and Applications
, pp. 31-48
-
-
De Haan, L.1
-
5
-
-
0039470514
-
Generalized regular variation of second order
-
MR1420345 (97g:26001)
-
L. de Haan and U. Stadtmüller, Generalized regular variation of second order, J. Aust. Math. Soc., A 61 (1996), 381–395.MR1420345 (97g:26001)
-
(1996)
J. Aust. Math. Soc., A
, vol.61
, pp. 381-395
-
-
De Haan, L.1
Stadtmüller, U.2
-
6
-
-
0001760675
-
A moment estimator for the index of an extreme-value distribution
-
MR1026315 (91i:62033)
-
A. L. M. Dekkers, J. H. J. Einmahl, and L. de Haan, A moment estimator for the index of an extreme-value distribution, Ann. Stat. 17 (1989), 1833–1855.MR1026315 (91i:62033)
-
(1989)
Ann. Stat
, vol.17
, pp. 1833-1855
-
-
Dekkers, A.L.M.1
Einmahl, J.H.J.2
De Haan, L.3
-
7
-
-
0040828799
-
Refined Pickands estimators of the extreme value index
-
MR1389865 (97d:62069)
-
H. Drees Refined Pickands estimators of the extreme value index, Ann. Statist. 23 (1995), 2059–2080.MR1389865 (97d:62069)
-
(1995)
Ann. Statist
, vol.23
, pp. 2059-2080
-
-
Drees, H.1
-
8
-
-
0032484340
-
A general class of estimators of the extreme value index
-
MR1616999 (99c:62085)
-
H. Drees, A general class of estimators of the extreme value index, J. Statist. Plann. Inference 66 (1998), 95–112.MR1616999 (99c:62085)
-
(1998)
J. Statist. Plann. Inference
, vol.66
, pp. 95-112
-
-
Drees, H.1
-
9
-
-
0001061726
-
Selecting the optimal sample fraction in univariate extreme value index
-
MR1632189 (99h:62034)
-
H. Drees and E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value index, Stochastic Process. Appl. 75 (1998), 149–172.MR1632189 (99h:62034)
-
(1998)
Stochastic Process. Appl
, vol.75
, pp. 149-172
-
-
Drees, H.1
Kaufmann, E.2
-
10
-
-
1642341600
-
Estimation problems for distributions with heavy tails
-
MR2058119 (2005c:62059)
-
Z. Fan, Estimation problems for distributions with heavy tails, J. Statist. Plann. Inference 123 (2004), 13–40.MR2058119 (2005c:62059)
-
(2004)
J. Statist. Plann. Inference
, vol.123
, pp. 13-40
-
-
Fan, Z.1
-
11
-
-
8344233641
-
A location invariant Hill-type estimator
-
MR1907061 (2003d:62129)
-
M. I. Fraga Alves, A location invariant Hill-type estimator, Extremes 4 (2001), 199–217.MR1907061 (2003d:62129)
-
(2001)
Extremes
, vol.4
, pp. 199-217
-
-
Fraga Alves, M.I.1
-
12
-
-
0003326493
-
Regular variation, extensions, and Tauberian theorems
-
MR906871 (89a:26002)
-
J. L. Geluk and L. de Haan, Regular variation, extensions, and Tauberian theorems, CWI Tract 40 (1987).MR906871 (89a:26002)
-
(1987)
CWI Tract
, vol.40
-
-
Geluk, J.L.1
De Haan, L.2
-
13
-
-
0000866457
-
Generalizations of the Hill estimator-asymptotic versus finite sample behavior
-
MR1822394
-
M. I. Gomes and M. J. Martins, Generalizations of the Hill estimator-asymptotic versus finite sample behavior, J. Statist. Plann. Inference 93 (2001), 161–180.MR1822394
-
(2001)
J. Statist. Plann. Inference
, vol.93
, pp. 161-180
-
-
Gomes, M.I.1
Martins, M.J.2
-
14
-
-
0347759854
-
Censoring estimators of a positive tail index
-
MR2018025 (2005d:62155)
-
M. I. Gomes and O. Oliveira, Censoring estimators of a positive tail index, Statist. Probab. Lett. 65 (2003), 147–159.MR2018025 (2005d:62155)
-
(2003)
Statist. Probab. Lett
, vol.65
, pp. 147-159
-
-
Gomes, M.I.1
Oliveira, O.2
-
15
-
-
0000439164
-
On estimating the endpoint of a distribution
-
MR653530 (83f:62043)
-
P. Hall, On estimating the endpoint of a distribution, Ann. Statist. 10 (1982), 556–568.MR653530 (83f:62043)
-
(1982)
Ann. Statist
, vol.10
, pp. 556-568
-
-
Hall, P.1
-
16
-
-
0001263124
-
A simple general approach to inference about the tail of a distribution
-
MR0378204 (51:14373)
-
B. M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), 1163–1174.MR0378204 (51:14373)
-
(1975)
Ann. Statist
, vol.3
, pp. 1163-1174
-
-
Hill, B.M.1
-
17
-
-
22044439647
-
Some results on estimation of the tail index of a distribution
-
MR1655939 (2000a:62037)
-
J. Pan, Some results on estimation of the tail index of a distribution, Chinese Ann. Math. Ser. B 19 (1998), 239–248.MR1655939 (2000a:62037)
-
(1998)
Chinese Ann. Math. Ser. B
, vol.19
, pp. 239-248
-
-
Pan, J.1
-
18
-
-
85009781322
-
Extension of Pickands’ estimator
-
MR1612631 (99c:62111)
-
Z. Peng, Extension of Pickands’ estimator, Math. Sinica 40 (1997), 759–762.MR1612631 (99c:62111)
-
(1997)
Math. Sinica
, vol.40
, pp. 759-762
-
-
Peng, Z.1
-
19
-
-
0032087519
-
Asymptotically unbiased estimators for the extreme value index
-
MR1627906 (99e:62056)
-
L. Peng, Asymptotically unbiased estimators for the extreme value index, Statist. Probab. Lett. 38 (1998), 107–115.MR1627906 (99e:62056)
-
(1998)
Statist. Probab. Lett
, vol.38
, pp. 107-115
-
-
Peng, L.1
-
20
-
-
0001075431
-
Statistical inference using extreme order statistics
-
MR0423667 (54:11642)
-
J. Pickands, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975), 119–131.MR0423667 (54:11642)
-
(1975)
Ann. Statist
, vol.3
, pp. 119-131
-
-
Pickands, J.1
-
21
-
-
85009761923
-
Convergence of Pickands-type estimators
-
Y. Qi and S. Cheng, Convergence of Pickands-type estimators, Chinese Sci. Bull. 37 (1992), 1409–1413.
-
(1992)
Chinese Sci. Bull
, vol.37
, pp. 1409-1413
-
-
Qi, Y.1
Cheng, S.2
-
22
-
-
0035995090
-
Abelian and Tauberian theorems for the bias of the Hill estimator
-
MR1925570 (2003k:62159)
-
J. Segers, Abelian and Tauberian theorems for the bias of the Hill estimator, Scand. J. Statist. 29 (2001), 461–483.MR1925570 (2003k:62159)
-
(2001)
Scand. J. Statist
, vol.29
, pp. 461-483
-
-
Segers, J.1
-
23
-
-
8644283685
-
Generalized Pickands estimators for the extreme value index
-
MR2102765
-
J. Segers, Generalized Pickands estimators for the extreme value index, J. Statist. Plann. Inference 128 (2005), 381–396.MR2102765
-
(2005)
J. Statist. Plann. Inference
, vol.128
, pp. 381-396
-
-
Segers, J.1
-
24
-
-
0000704345
-
Maximum likelihood estimation in a class of nonregular cases
-
MR790201 (86k:62053)
-
R. L. Smith, Maximum likelihood estimation in a class of nonregular cases, Biometrika 72 (1985), 67–90.MR790201 (86k:62053)
-
(1985)
Biometrika
, vol.72
, pp. 67-90
-
-
Smith, R.L.1
-
25
-
-
0001258027
-
Estimation of tails of probability distribution
-
MR902252 (88j:62096)
-
R. L. Smith, Estimation of tails of probability distribution, Ann. Statist. 15 (1987), 1174–1207.MR902252 (88j:62096)
-
(1987)
Ann. Statist
, vol.15
, pp. 1174-1207
-
-
Smith, R.L.1
-
26
-
-
0000110113
-
Maximum likelihood estimation of the lower tail of probability distribution
-
MR816094 (87b:62035)
-
R. L. Smith and I. Weissman, Maximum likelihood estimation of the lower tail of probability distribution, J. Roy. Statist. Soc. Ser. B 47 (1985), 285–298.MR816094 (87b:62035)
-
(1985)
J. Roy. Statist. Soc. Ser. B
, vol.47
, pp. 285-298
-
-
Smith, R.L.1
Weissman, I.2
-
28
-
-
27144531190
-
General regular variation of nth order and the second order Edgeworth expansion of the extreme value distribution. I
-
MR2176324 (2006i:60063)
-
X. Wang and S. Cheng, General regular variation of nth order and the second order Edgeworth expansion of the extreme value distribution. I, Acta Math. Sin., Engl. Ser. 21 (2005), no. 5, 1121–1130.MR2176324 (2006i:60063)
-
(2005)
Acta Math. Sin., Engl. Ser
, vol.21
, Issue.5
, pp. 1121-1130
-
-
Wang, X.1
Cheng, S.2
-
29
-
-
0036532098
-
On a general Pickands estimator of extreme value index
-
MR1896495 (2003e:62050)
-
S. Yun, On a general Pickands estimator of extreme value index, J. Statist. Plann. Inference 102 (2002), 389–409.MR1896495 (2003e:62050)
-
(2002)
J. Statist. Plann. Inference
, vol.102
, pp. 389-409
-
-
Yun, S.1
|