-
1
-
-
21944433803
-
Closure ordering and the Kostant–Sekiguchi correspondence
-
MR 98c:22004
-
D. Barbasch and M.R. Sepanski, Closure ordering and the Kostant–Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), 311–317. MR 98c:22004
-
(1998)
Proc. Amer. Math. Soc
, vol.126
, pp. 311-317
-
-
Barbasch, D.1
Sepanski, M.R.2
-
2
-
-
0039037448
-
Green functions of finite Chevalley groups of type En(N = 6, 7, 8)
-
MR 85k:20136
-
W.M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type En(n = 6, 7, 8), J. Algebra 88 (1984), 584–614. MR 85k:20136
-
(1984)
J. Algebra
, vol.88
, pp. 584-614
-
-
Beynon, W.M.1
Spaltenstein, N.2
-
4
-
-
0003471368
-
-
Springer–Verlag, New York, xv+267 pp
-
B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, Maple V Language reference Manual, Springer–Verlag, New York, 1991, xv+267 pp.
-
(1991)
Maple V Language Reference Manual
-
-
Char, B.W.1
Geddes, K.O.2
Gonnet, G.H.3
Leong, B.L.4
Monagan, M.B.5
Watt, S.M.6
-
6
-
-
38249027697
-
Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers
-
MR 89b:17010
-
D. Ž. Đoković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503–524. MR 89b:17010
-
(1988)
J. Algebra
, vol.112
, pp. 503-524
-
-
Đ Okovi Ć, D.Ž.1
-
8
-
-
0345323806
-
The closure diagrams for nilpotent orbits of real forms of F4 and G2
-
MR 2001i:14061
-
D. Ž. Đoković The closure diagrams for nilpotent orbits of real forms of F4 and G2, J. Lie Theory 10 (2000), 491–510. MR 2001i:14061
-
(2000)
J. Lie Theory
, vol.10
, pp. 491-510
-
-
Đ Okovi Ć, D.Ž.1
-
9
-
-
0345323805
-
The closure diagrams for nilpotent orbits of real forms of E6
-
D. Ž. Đoković, The closure diagrams for nilpotent orbits of real forms of E6, J. Lie Theory 11 (2001), 381–413.
-
(2001)
J. Lie Theory
, vol.11
, pp. 381-413
-
-
Đ Okovi Ć, D.Ž.1
-
10
-
-
0344892712
-
The closure diagrams for nilpotent orbits of the real forms E VI and E VII of E7, Represent
-
CMP 2001:11
-
D. Ž. Đoković, The closure diagrams for nilpotent orbits of the real forms E VI and E VII of E7, Represent. Theory 5 (2001), 17–42. CMP 2001:11
-
(2001)
Theory
, vol.5
, pp. 17-42
-
-
Đ Okovi Ć, D.Ž.1
-
11
-
-
85009791423
-
The closure diagram for nilpotent orbits of the real form E IX of E8
-
(to appear)
-
D. Ž. Đoković, The closure diagram for nilpotent orbits of the real form E IX of E8, Asian J. Math. (to appear), 23 pp.
-
Asian J. Math
, pp. 23
-
-
Đ Okovi Ć, D.Ž.1
-
12
-
-
84972490990
-
The conjugate classes of unipotent elements of the Chevalley groups E7 and E8
-
MR 82m:20046
-
K. Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E7 and E8, Tokyo J. Math. 3 (1980), 391–461. MR 82m:20046
-
(1980)
Tokyo J. Math
, vol.3
, pp. 391-461
-
-
Mizuno, K.1
-
13
-
-
84972497961
-
A classification of irreducible prehomogeneous vector spaces and their relative invariants
-
MR 55:3341
-
M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 55:3341
-
(1977)
Nagoya Math. J
, vol.65
, pp. 1-155
-
-
Sato, M.1
Kimura, T.2
-
14
-
-
84972491031
-
Theory of prehomogeneous vector spaces (Algebraic part), the English translation of Sato’s lecture from Shintani’s notes. Notes by Takuro Shintani. Translated from the Japanese by Masakazu Muro
-
MR 92c:32039
-
M. Sato, Theory of prehomogeneous vector spaces (algebraic part), the English translation of Sato’s lecture from Shintani’s notes. Notes by Takuro Shintani. Translated from the Japanese by Masakazu Muro, Nagoya Math. J. 120 (1990), 1–34. MR 92c:32039
-
(1990)
Nagoya Math. J
, vol.120
, pp. 1-34
-
-
Sato, M.1
-
15
-
-
0002862611
-
Normalisateurs de tores. I. Groupes de Coxeter étendus
-
MR 34:5942
-
J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116. MR 34:5942
-
(1966)
J. Algebra
, vol.4
, pp. 96-116
-
-
Tits, J.1
-
16
-
-
0442289116
-
LiE, a software package for Lie group theoretic computations
-
Amsterdam, The Netherlands
-
M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, “LiE”, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.
-
Computer Algebra Group of CWI
-
-
Van Leeuwen, M.A.A.1
Cohen, A.M.2
Lisser, B.3
|