메뉴 건너뛰기




Volumn 42, Issue 8, 2017, Pages 4751-4763

Cold gas efficiency enhancement in a chemical looping combustion system using staged H2 separation approach

Author keywords

ASPEN plus; Cold gas efficiency; H2 production; Iron oxide based chemical looping; Reactor separator configuration; Staged H2 separation

Indexed keywords

CARBON DIOXIDE; CHEMICAL EQUIPMENT; COMBUSTION; COMPUTER SOFTWARE; GASES; REFORMING REACTIONS; SENSITIVITY ANALYSIS; SMALL NUCLEAR REACTORS; STEAM REFORMING;

EID: 85009435783     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2016.12.005     Document Type: Article
Times cited : (9)

References (50)
  • 1
    • 0033618581 scopus 로고    scopus 로고
    • A realizable renewable energy future
    • [1] Turner, J.A., A realizable renewable energy future. Science 285 (1999), 687–689.
    • (1999) Science , vol.285 , pp. 687-689
    • Turner, J.A.1
  • 2
    • 11144309638 scopus 로고    scopus 로고
    • Special issue: toward a hydrogen economy
    • [2] Special issue: toward a hydrogen economy. Science, 305, 2004, 957.
    • (2004) Science , vol.305 , pp. 957
  • 3
    • 0037332970 scopus 로고    scopus 로고
    • The hydrogen economy in the 21st century: a sustainable development scenario
    • [3] Barreto, L., Makihira, A., Riahi, K., The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28 (2003), 267–284.
    • (2003) Int J Hydrogen Energy , vol.28 , pp. 267-284
    • Barreto, L.1    Makihira, A.2    Riahi, K.3
  • 4
    • 0036629128 scopus 로고    scopus 로고
    • The origin of ideas on a hydrogen economy and its solution to the decay of the environment
    • [4] Bockris, J.O.M., The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int J Hydrogen Energy 27 (2002), 731–740.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 731-740
    • Bockris, J.O.M.1
  • 5
    • 35348839857 scopus 로고    scopus 로고
    • Transition to hydrogen economy in the United States: a 2006 status report
    • [5] Lattin, W.C., Utgikar, V.P., Transition to hydrogen economy in the United States: a 2006 status report. Int J Hydrogen Energy 32 (2007), 3230–3237.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 3230-3237
    • Lattin, W.C.1    Utgikar, V.P.2
  • 7
    • 85032039866 scopus 로고    scopus 로고
    • [7] Board on Energy and Environmental Systems National Research Council, Division on Engineering and Physical Sciences National Research Council, and Washington National Academy of Engineering, The hydrogen economy: opportunities, costs, barriers, and R&D needs. 2004, The National Academies Press.
  • 8
    • 0032108850 scopus 로고    scopus 로고
    • An overview of industrial uses of hydrogen
    • [8] Ramachandran, R., An overview of industrial uses of hydrogen. Int J Hydrogen Energy 23 (1998), 593–598.
    • (1998) Int J Hydrogen Energy , vol.23 , pp. 593-598
    • Ramachandran, R.1
  • 9
    • 84900427502 scopus 로고    scopus 로고
    • Hydrogen production technologies: current state and future developments
    • [9] Kalamaras, C.M., Efstathiou, A.M., Hydrogen production technologies: current state and future developments. Conf Pap Energy, 2013, 9.
    • (2013) Conf Pap Energy , pp. 9
    • Kalamaras, C.M.1    Efstathiou, A.M.2
  • 10
    • 84913621658 scopus 로고    scopus 로고
    • 2 capture options from various points in steam methane reforming for hydrogen production
    • [10] Soltani, R., Rosen, M.A., Dincer, I., Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. Int J Hydrogen Energy 39 (2014), 20266–20275.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 20266-20275
    • Soltani, R.1    Rosen, M.A.2    Dincer, I.3
  • 11
    • 0018943730 scopus 로고
    • Methane-steam reforming
    • [11] Van Hook, J.P., Methane-steam reforming. Catal Rev 21 (1980), 1–51.
    • (1980) Catal Rev , vol.21 , pp. 1-51
    • Van Hook, J.P.1
  • 12
    • 11344254687 scopus 로고    scopus 로고
    • From hydrocarbon to hydrogen-carbon to hydrogen economy
    • [12] Muradov, N.Z., Veziroǧlu, T.N., From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 30 (2005), 225–237.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 225-237
    • Muradov, N.Z.1    Veziroǧlu, T.N.2
  • 13
    • 85032041056 scopus 로고    scopus 로고
    • [13] Rath, L., Assessment of hydrogen production with CO2 capture – volume 1: baseline state-of-the-art plants. U.S. Department of Energy, DOE/NETL-2010/1434, 2010.
  • 14
    • 57649107180 scopus 로고    scopus 로고
    • An overview of hydrogen production technologies
    • [14] Holladay, J.D., Hu, J., King, D.L., Wang, Y., An overview of hydrogen production technologies. Catal Today 139 (2009), 244–260.
    • (2009) Catal Today , vol.139 , pp. 244-260
    • Holladay, J.D.1    Hu, J.2    King, D.L.3    Wang, Y.4
  • 15
    • 84920185736 scopus 로고    scopus 로고
    • Chemical-looping technology platform
    • [15] Fan, L.S., Zeng, L., Luo, S., Chemical-looping technology platform. AIChE J 61 (2015), 2–22.
    • (2015) AIChE J , vol.61 , pp. 2-22
    • Fan, L.S.1    Zeng, L.2    Luo, S.3
  • 17
    • 84864225674 scopus 로고    scopus 로고
    • 2 capture and carbonaceous fuel conversion- prospect and opportunity
    • [17] Fan, L.S., Zeng, L., Wang, W., Luo, S., Chemical looping processes for CO2 capture and carbonaceous fuel conversion- prospect and opportunity. Energy Environ Sci 5 (2012), 7254–7280.
    • (2012) Energy Environ Sci , vol.5 , pp. 7254-7280
    • Fan, L.S.1    Zeng, L.2    Wang, W.3    Luo, S.4
  • 18
    • 33744923426 scopus 로고    scopus 로고
    • Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion
    • [18] Rydén, M., Lyngfelt, A., Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrogen Energy 31 (2006), 1271–1283.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1271-1283
    • Rydén, M.1    Lyngfelt, A.2
  • 19
    • 72649104364 scopus 로고    scopus 로고
    • Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers
    • [19] Ortiz, M., Abad, A., De Diego, L.F., García-Labiano, F., Gayán, Adánez J., Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers. Int J Hydrogen Energy 35 (2010), 151–160.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 151-160
    • Ortiz, M.1    Abad, A.2    De Diego, L.F.3    García-Labiano, F.4    Gayán, A.J.5
  • 20
    • 84910153973 scopus 로고    scopus 로고
    • 2:CO ratio of 2:1
    • [20] Luo, S., Zeng, L., Xu, D., Kathe, M., Chung, E., Deshpande, N., et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2:1. Energy Environ Sci 7 (2014), 4104–4117.
    • (2014) Energy Environ Sci , vol.7 , pp. 4104-4117
    • Luo, S.1    Zeng, L.2    Xu, D.3    Kathe, M.4    Chung, E.5    Deshpande, N.6
  • 21
    • 33646512595 scopus 로고    scopus 로고
    • Two novel approaches for hydrogen production, chemical-looping reforming and steam reforming with carbon dioxide capture by chemical-looping combustion
    • [21] Rydén, M., Lyngfelt, A., Mattisson, T., Two novel approaches for hydrogen production, chemical-looping reforming and steam reforming with carbon dioxide capture by chemical-looping combustion. Fuel 85 (2006), 1631–1641.
    • (2006) Fuel , vol.85 , pp. 1631-1641
    • Rydén, M.1    Lyngfelt, A.2    Mattisson, T.3
  • 22
    • 0023293923 scopus 로고
    • Evaluation of a chemical-looping- combustion power-generation system by graphic exergy analysis
    • [22] Ishida, M., Zheng, D., Akehata, T., Evaluation of a chemical-looping- combustion power-generation system by graphic exergy analysis. Energy 12 (1987), 147–154.
    • (1987) Energy , vol.12 , pp. 147-154
    • Ishida, M.1    Zheng, D.2    Akehata, T.3
  • 23
    • 52049114894 scopus 로고    scopus 로고
    • 2 separations-a review
    • [23] Hossain, M.M., de Lasa, H.I., Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chem Eng Sci 63 (2008), 4433–4451.
    • (2008) Chem Eng Sci , vol.63 , pp. 4433-4451
    • Hossain, M.M.1    de Lasa, H.I.2
  • 24
    • 85032040486 scopus 로고    scopus 로고
    • [24] Lane, H., Process for the production of hydrogen. U. S Pat 1,078,686, 1913.
  • 25
    • 77955406163 scopus 로고    scopus 로고
    • Syngas chemical looping gasification process: bench scale studies and reactor simulations
    • [25] Li, F., Zeng, L., Velazquez-Vargas, L., Yoscovits, Z., Fan, L.S., Syngas chemical looping gasification process: bench scale studies and reactor simulations. AIChE J 56 (2010), 2186–2199.
    • (2010) AIChE J , vol.56 , pp. 2186-2199
    • Li, F.1    Zeng, L.2    Velazquez-Vargas, L.3    Yoscovits, Z.4    Fan, L.S.5
  • 26
    • 69549135811 scopus 로고    scopus 로고
    • Syngas chemical looping gasification process: oxygen carrier particle selection and performance
    • [26] Li, F., Kim, R., Sridhar, D., Wang, F., Zeng, L., Chen, J., et al. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels 23 (2009), 4182–4189.
    • (2009) Energy Fuels , vol.23 , pp. 4182-4189
    • Li, F.1    Kim, R.2    Sridhar, D.3    Wang, F.4    Zeng, L.5    Chen, J.6
  • 27
    • 77956619287 scopus 로고    scopus 로고
    • Biomass direct chemical looping process: process simulation
    • [27] Li, F., Zeng, L., Fan, L.S., Biomass direct chemical looping process: process simulation. Fuel 89 (2009), 3773–3784.
    • (2009) Fuel , vol.89 , pp. 3773-3784
    • Li, F.1    Zeng, L.2    Fan, L.S.3
  • 28
    • 84862703441 scopus 로고    scopus 로고
    • Coal-direct chemical looping gasification for hydrogen production: reactor modelling and process simulation
    • [28] Zeng, L., Feng, H., Li, F., Fan, L.S., Coal-direct chemical looping gasification for hydrogen production: reactor modelling and process simulation. Energy Fuels 26 (2012), 3680–3690.
    • (2012) Energy Fuels , vol.26 , pp. 3680-3690
    • Zeng, L.1    Feng, H.2    Li, F.3    Fan, L.S.4
  • 29
    • 77958152671 scopus 로고    scopus 로고
    • Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production
    • [29] Kang, K.S., Kim, C.H., Bae, K.K., Cho, W.C., Kim, S.H., Park, C.S., Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. Int J Hydrogen Energy 35 (2010), 12246–12254.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 12246-12254
    • Kang, K.S.1    Kim, C.H.2    Bae, K.K.3    Cho, W.C.4    Kim, S.H.5    Park, C.S.6
  • 30
    • 84870485727 scopus 로고    scopus 로고
    • Continuous high purity hydrogen generation from a syngas chemical looping 25 kWth sub-pilot unit with 100% carbon capture
    • [30] Tong, A., Sridhar, D., Sun, Z., Kim, H.R., Zeng, L., Wang, F., et al. Continuous high purity hydrogen generation from a syngas chemical looping 25 kWth sub-pilot unit with 100% carbon capture. Fuel 103 (2012), 495–505.
    • (2012) Fuel , vol.103 , pp. 495-505
    • Tong, A.1    Sridhar, D.2    Sun, Z.3    Kim, H.R.4    Zeng, L.5    Wang, F.6
  • 31
    • 84952923751 scopus 로고    scopus 로고
    • Hydrogen production from natural gas using an iron-based chemical looping technology: thermodynamic simulations and process system analysis
    • [31] Kathe, M.V., Empfield, A., Na, J., Blair, E., Fan, L.S., Hydrogen production from natural gas using an iron-based chemical looping technology: thermodynamic simulations and process system analysis. Appl Energy 165 (2016), 183–201.
    • (2016) Appl Energy , vol.165 , pp. 183-201
    • Kathe, M.V.1    Empfield, A.2    Na, J.3    Blair, E.4    Fan, L.S.5
  • 32
    • 79952247963 scopus 로고    scopus 로고
    • [32] Fan, L.S., Chemical looping systems for fossil energy conversions. 2010, John Wiley & Sons, Inc., New Jersey.
  • 33
    • 34248580640 scopus 로고    scopus 로고
    • State-of-the-Art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries
    • [33] Ritter, J.A., Ebner, A.D., State-of-the-Art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Sep Sci Technol 42 (2007), 1123–1193.
    • (2007) Sep Sci Technol , vol.42 , pp. 1123-1193
    • Ritter, J.A.1    Ebner, A.D.2
  • 34
    • 39849105666 scopus 로고    scopus 로고
    • Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review
    • [34] Barelli, L., Bidini, G., Gallorini, F., Servili, S., Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33 (2008), 554–570.
    • (2008) Energy , vol.33 , pp. 554-570
    • Barelli, L.1    Bidini, G.2    Gallorini, F.3    Servili, S.4
  • 35
    • 84873980863 scopus 로고    scopus 로고
    • Recent advances on membranes and membrane reactors for hydrogen production
    • [35] Gallucci, F., Fernandez, E., Corengia, P., van Sint Annaland, M., Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92 (2013), 40–66.
    • (2013) Chem Eng Sci , vol.92 , pp. 40-66
    • Gallucci, F.1    Fernandez, E.2    Corengia, P.3    van Sint Annaland, M.4
  • 36
    • 34548065921 scopus 로고    scopus 로고
    • Inorganic membranes for hydrogen production and purification: a critical review and perspective
    • [36] Lu, G.Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., et al. Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314 (2007), 589–603.
    • (2007) J Colloid Interface Sci , vol.314 , pp. 589-603
    • Lu, G.Q.1    Diniz da Costa, J.C.2    Duke, M.3    Giessler, S.4    Socolow, R.5    Williams, R.H.6
  • 37
    • 0033082355 scopus 로고    scopus 로고
    • Sorption-enhanced reaction process for hydrogen production
    • [37] Hufton, J.R., Mayorga, S., Sircar, S., Sorption-enhanced reaction process for hydrogen production. AIChE J 45 (1999), 248–256.
    • (1999) AIChE J , vol.45 , pp. 248-256
    • Hufton, J.R.1    Mayorga, S.2    Sircar, S.3
  • 38
    • 84954213813 scopus 로고    scopus 로고
    • Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review
    • [38] Adolfo, I., Liguori, S., Jennifer, W., Angelo, B., Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review. Catal Rev 58 (2016), 1–35.
    • (2016) Catal Rev , vol.58 , pp. 1-35
    • Adolfo, I.1    Liguori, S.2    Jennifer, W.3    Angelo, B.4
  • 40
    • 32644449613 scopus 로고    scopus 로고
    • Hydrogen membrane separation techniques
    • [40] Adhikari, S., Fernando, S., Hydrogen membrane separation techniques. Ind Eng Chem Res 45 (2006), 875–881.
    • (2006) Ind Eng Chem Res , vol.45 , pp. 875-881
    • Adhikari, S.1    Fernando, S.2
  • 41
    • 77954826477 scopus 로고    scopus 로고
    • Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming
    • [41] Gallucci, F., van Sint Annaland, M., Kuipers, J.A.M., Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming. Int J Hydrogen Energy 35 (2010), 7142–7150.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 7142-7150
    • Gallucci, F.1    van Sint Annaland, M.2    Kuipers, J.A.M.3
  • 44
    • 84884520344 scopus 로고    scopus 로고
    • Enhancement of hydrogen production and carbon dioxide capturing in a novel methane steam reformer coupled with chemical looping combustion and assisted by hydrogen perm- selective membranes
    • [44] Abbasi, M., Farniaei, M., Rahimpour, M.R., Shariati, A., Enhancement of hydrogen production and carbon dioxide capturing in a novel methane steam reformer coupled with chemical looping combustion and assisted by hydrogen perm- selective membranes. Energy Fuels 27 (2013), 5359–5372.
    • (2013) Energy Fuels , vol.27 , pp. 5359-5372
    • Abbasi, M.1    Farniaei, M.2    Rahimpour, M.R.3    Shariati, A.4
  • 45
    • 46149103139 scopus 로고    scopus 로고
    • Optimization of membrane area and catalyst distribution in a permeative-stage membrane reactor for methane steam reforming
    • [45] Caravella, A., Di Maio, F.P., Di Renzo, A., Optimization of membrane area and catalyst distribution in a permeative-stage membrane reactor for methane steam reforming. J Memb Sci 321 (2008), 209–221.
    • (2008) J Memb Sci , vol.321 , pp. 209-221
    • Caravella, A.1    Di Maio, F.P.2    Di Renzo, A.3
  • 46
    • 85032038750 scopus 로고    scopus 로고
    • [46] Falco, M.D., Marrelli, L., Iaquaniello, G., Membrane reactors for hydrogen production processes. 2011, Springer, New York.
  • 47
    • 78650513046 scopus 로고    scopus 로고
    • Experimental tests on steam reforming of natural gas in a reformer and membrane modules (RMM) plant
    • [47] Falco, M.D., Iaquaniello, G., Salladini, A., Experimental tests on steam reforming of natural gas in a reformer and membrane modules (RMM) plant. J Memb Sci 368 (2011), 264–274.
    • (2011) J Memb Sci , vol.368 , pp. 264-274
    • Falco, M.D.1    Iaquaniello, G.2    Salladini, A.3
  • 48
    • 85032040472 scopus 로고    scopus 로고
    • [48] Grol, E., Integration of H2 separation membranes with CO2 capture and compression. U.S. Department of Energy, DOE/NETL-401/113009, 2009.
  • 49
    • 0032558175 scopus 로고    scopus 로고
    • Separation of hydrogen from steam using a SiC-based membrane formed by chemical vapor deposition of triisopropylsilane
    • [49] Sea, B.K., Ando, K., Kusakabe, K., Morooka, S., Separation of hydrogen from steam using a SiC-based membrane formed by chemical vapor deposition of triisopropylsilane. J Memb Sci 146 (1998), 73–82.
    • (1998) J Memb Sci , vol.146 , pp. 73-82
    • Sea, B.K.1    Ando, K.2    Kusakabe, K.3    Morooka, S.4
  • 50
    • 30944451336 scopus 로고    scopus 로고
    • Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature
    • [50] Kanezashi, M., Asaeda, M., Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J Memb Sci 271 (2006), 86–93.
    • (2006) J Memb Sci , vol.271 , pp. 86-93
    • Kanezashi, M.1    Asaeda, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.