메뉴 건너뛰기




Volumn , Issue , 2003, Pages 865-868

Trajectory modeling based on HMMs with the explicit relationship between static and dynamic features

Author keywords

[No Author keywords available]

Indexed keywords

SPEECH COMMUNICATION; TRAJECTORIES; VITERBI ALGORITHM;

EID: 85009231267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (40)

References (23)
  • 1
    • 0000660638 scopus 로고
    • Segmental hidden markov models
    • M. J. F. Gales and S. J. Young, "Segmental Hidden Markov Models," Proc. EUROSPEECH, pp.1579-1582, 1993.
    • (1993) Proc. EUROSPEECH , pp. 1579-1582
    • Gales, M.J.F.1    Young, S.J.2
  • 2
    • 0030371122 scopus 로고    scopus 로고
    • Parametric trajectory models for speech recognition
    • H. Gish and K. Ng, "Parametric trajectory models for speech recognition," Proc. ICSLP, pp.I-466-I-469, 1996.
    • (1996) Proc. ICSLP , pp. I466-I469
    • Gish, H.1    Ng, K.2
  • 3
    • 34249312073 scopus 로고
    • Speech recognition using a linear dynamic segmental HMM
    • W. J. Holmes and M. J. Russell, "Speech recognition using a linear dynamic segmental HMM," Proc. ICASSP, pp.1611-1614, 1995.
    • (1995) Proc. ICASSP , pp. 1611-1614
    • Holmes, W.J.1    Russell, M.J.2
  • 4
    • 0030245363 scopus 로고    scopus 로고
    • From HMMs to segment models: A unified view of stochastic modeling for speech recognition
    • M. Ostendorf, V. Digalakis, and O. A. Kimball, "From HMMs to segment models: a unified view of stochastic modeling for speech recognition," IEEE Trans. on Speech and Audio Processing, vol.4, no.5, pp.360-378, 1996.
    • (1996) IEEE Trans. on Speech and Audio Processing , vol.4 , Issue.5 , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.2    Kimball, O.A.3
  • 5
    • 0028516022 scopus 로고
    • Speech recgnition using hiden Markov models with polynomial regression functions as nonstationary states
    • Oct
    • L. Deng, M. Aksmanovic, X. Sun, J. Wu, "Speech recgnition using hiden Markov models with polynomial regression functions as nonstationary states," IEEE Trans. on Speech and Audio Processing, vol.2, no.4, pp.507-520, Oct. 1994.
    • (1994) IEEE Trans. on Speech and Audio Processing , vol.2 , Issue.4 , pp. 507-520
    • Deng, L.1    Aksmanovic, M.2    Sun, X.3    Wu, J.4
  • 6
    • 0003384830 scopus 로고
    • Stochastic trajectory modeling for speech recognition
    • Y. Gong and J. P. Haton, "Stochastic trajectory modeling for speech recognition," Proc. ICASSP, vol.I, pp57-60, 1994.
    • (1994) Proc. ICASSP , vol.1 , pp. 57-60
    • Gong, Y.1    Haton, J.P.2
  • 7
    • 0027309782 scopus 로고
    • Phoneme HMM's constrained by frame correlations
    • S. Takahashi, "Phoneme HMM's constrained by frame correlations," Proc. ICASSP, pp. 219-222, 1993.
    • (1993) Proc. ICASSP , pp. 219-222
    • Takahashi, S.1
  • 8
    • 18544404092 scopus 로고
    • Use of temporal correlation between successive frames in hidden Markov model based Speech recognizer
    • K. K. Paliwal, "Use of temporal correlation between successive frames in hidden Markov model based Speech recognizer," Proc. ICASSP, pp.215-218, 1993.
    • (1993) Proc. ICASSP , pp. 215-218
    • Paliwal, K.K.1
  • 9
    • 0024900279 scopus 로고
    • A stochastic segment model for phoneme-based continuous speech recognition
    • M. Ostendorf and S.Roukos, "A stochastic segment model for phoneme-based continuous speech recognition," IEEE Trans. On Acoustics, Speech and Signal Processing, vol.37, no.12, pp.1857- 1869, 1989.
    • (1989) IEEE Trans. on Acoustics, Speech and Signal Processing , vol.37 , Issue.12 , pp. 1857-1869
    • Ostendorf, M.1    Roukos, S.2
  • 10
    • 0000321310 scopus 로고
    • Explicit correlation in hidden markov model for speech recognition
    • C. J.Wellekens, "Explicit correlation in hidden Markov model for Speech Recognition," Proc. ICASSP, pp.383-386, 1987.
    • (1987) Proc. ICASSP , pp. 383-386
    • Wellekens, C.J.1
  • 11
    • 0022667694 scopus 로고
    • Speaker independent isolated word rcognition using dynamic features of speech spectrum
    • S. Furui, "Speaker independent isolated word rcognition using dynamic features of speech spectrum," IEEE Trans. Acoust., Speech, Signal Processing, vol.ASSP-34, pp.52-59, 1986.
    • (1986) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-34 , pp. 52-59
    • Furui, S.1
  • 12
    • 0028996993 scopus 로고
    • Speech parameter generation from HMM using dynamic features
    • K. Tokuda, T. Kobayashi and S. Imai, "Speech parameter generation from HMM using dynamic features," Proc. ICASSP, pp.660- 663, 1995.
    • (1995) Proc. ICASSP , pp. 660-663
    • Tokuda, K.1    Kobayashi, T.2    Imai, S.3
  • 13
    • 85031628788 scopus 로고
    • An algorithm for speech parameter generation from continuous mixture HMMs with dynamic features
    • K. Tokuda, T. Masuko, T. Yamada, T. Kobayashi and S. Imai, "An algorithm for speech parameter generation from continuous mixture HMMs with dynamic features," Proc. EUROSPEECH, pp.757-760, 1995.
    • (1995) Proc. EUROSPEECH , pp. 757-760
    • Tokuda, K.1    Masuko, T.2    Yamada, T.3    Kobayashi, T.4    Imai, S.5
  • 14
    • 0033708106 scopus 로고    scopus 로고
    • Speech parameter generation algorithms for HMM-based speech synthesis
    • June
    • K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, T. Kitamura, "Speech parameter generation algorithms for HMM-based speech synthesis," Proc. ICASSP, vol.3, pp.1315-1318, June 2000.
    • (2000) Proc. ICASSP , vol.3 , pp. 1315-1318
    • Tokuda, K.1    Yoshimura, T.2    Masuko, T.3    Kobayashi, T.4    Kitamura, T.5
  • 15
    • 85009139544 scopus 로고    scopus 로고
    • Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis
    • T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi and T. Kitamura, "Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis," Proc. EUROSPEECH, pp.2347- 2350, 1999.
    • (1999) Proc. EUROSPEECH , pp. 2347-2350
    • Yoshimura, T.1    Tokuda, K.2    Masuko, T.3    Kobayashi, T.4    Kitamura, T.5
  • 17
    • 0034842740 scopus 로고    scopus 로고
    • Adaptation of pitch and spectrum for hmm-based speech synthesis using mllr
    • May
    • M. Tamura, T. Masuko, K. Tokuda and T. Kobayashi, "Adaptation of pitch and spectrum for HMM-based speech synthesis using MLLR," Proc. ICASSP, vol.2, pp.805-808, May 2001.
    • (2001) Proc. ICASSP , vol.2 , pp. 805-808
    • Tamura, M.1    Masuko, T.2    Tokuda, K.3    Kobayashi, T.4
  • 19
    • 0036293703 scopus 로고    scopus 로고
    • A recognition method with parametric trajectory synthesized using direct relations between static and dynamic feature vector time series
    • Y. Minami, E. McDermott, A. Nakamura, S. Katagiri, "A recognition method with parametric trajectory synthesized using direct relations between static and dynamic feature vector time series," Proc. ICASSP, vol.I, pp.957-960, 2002.
    • (2002) Proc. ICASSP , vol.1 , pp. 957-960
    • Minami, Y.1    McDermott, E.2    Nakamura, A.3    Katagiri, S.4
  • 21
    • 0006682104 scopus 로고    scopus 로고
    • Vector quantization of speech spectral parameters using statistics of dynamic features
    • K. Koishida, K. Tokuda, T. Masuko and T. Kobayashi, "Vector quantization of speech spectral parameters using statistics of dynamic features," Proc. ICSP, pp.247-252, 1997.
    • (1997) Proc. ICSP , pp. 247-252
    • Koishida, K.1    Tokuda, K.2    Masuko, T.3    Kobayashi, T.4
  • 22
    • 85016140477 scopus 로고
    • An adaptive algorithm for mel-cepstral analysis of speech
    • T. Fukada, K. Tokuda, T. Kobayashi and S. Imai, "An adaptive algorithm for mel-cepstral analysis of speech," in Proc. ICASSP, 1992, pp.137-140.
    • (1992) Proc. ICASSP , pp. 137-140
    • Fukada, T.1    Tokuda, K.2    Kobayashi, T.3    Imai, S.4
  • 23
    • 85135264071 scopus 로고    scopus 로고
    • Formant analysis and synthesis using hidden Markov models
    • A. Acero, "Formant analysis and synthesis using hidden Markov models," Proc. EUROSPEECH, pp.1047-1050, 1999.
    • (1999) Proc. EUROSPEECH , pp. 1047-1050
    • Acero, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.