-
1
-
-
29944442445
-
Noise-enhanced balance control in patients with diabetes and patients with stroke
-
[1] Priplata, A.A, Patritti, B.L., Niemi, J.B., Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann. Neurology 59 (2006), 4–12.
-
(2006)
Ann. Neurology
, vol.59
, pp. 4-12
-
-
Priplata, A.A.1
Patritti, B.L.2
Niemi, J.B.3
-
2
-
-
67649130134
-
Stability in distribution of neutral stochastic differential delay equations with Markovian switching
-
[2] Bao, J., Hou, Z., Yuan, C., Stability in distribution of neutral stochastic differential delay equations with Markovian switching. Statist. Probab. Lett. 79 (2009), 1663–1673.
-
(2009)
Statist. Probab. Lett.
, vol.79
, pp. 1663-1673
-
-
Bao, J.1
Hou, Z.2
Yuan, C.3
-
3
-
-
84940713463
-
Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis
-
[3] Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H., Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433 (2016), 227–242.
-
(2016)
J. Math. Anal. Appl.
, vol.433
, pp. 227-242
-
-
Meng, X.Z.1
Zhao, S.N.2
Feng, T.3
Zhang, T.H.4
-
4
-
-
84872049589
-
Global stability for a multi-group SIRS epidemic model with varying population sizes
-
[4] Muroya, Y., Enatsu, Y., Kuniya, T., Global stability for a multi-group SIRS epidemic model with varying population sizes. Nonlinear Anal. RWA 14 (2013), 1693–1704.
-
(2013)
Nonlinear Anal. RWA
, vol.14
, pp. 1693-1704
-
-
Muroya, Y.1
Enatsu, Y.2
Kuniya, T.3
-
5
-
-
84883134834
-
The extinction and persistence of the stochastic SIS epidemic model with vaccination
-
[5] Zhao, Y.N., Jiang, D.Q., ORegan, Donal, The extinction and persistence of the stochastic SIS epidemic model with vaccination. Physica A 392 (2013), 1135–1143.
-
(2013)
Physica A
, vol.392
, pp. 1135-1143
-
-
Zhao, Y.N.1
Jiang, D.Q.2
ORegan, D.3
-
6
-
-
84950986062
-
Threshold behavior of a stochastic SIS model with levy jumps
-
[6] Zhou, Y.L., Yuan, S.L., Zhao, D.L., Threshold behavior of a stochastic SIS model with levy jumps. Appl. Math. Comput. 275 (2016), 255–267.
-
(2016)
Appl. Math. Comput.
, vol.275
, pp. 255-267
-
-
Zhou, Y.L.1
Yuan, S.L.2
Zhao, D.L.3
-
7
-
-
84990969525
-
A contribution to the mathematical theory of epidemic
-
[7] Kermazk, W.O., Mckendrick, A.G., A contribution to the mathematical theory of epidemic. Proc. R. Soc. Lond. All. 5 (1927), 700–721.
-
(1927)
Proc. R. Soc. Lond. All.
, vol.5
, pp. 700-721
-
-
Kermazk, W.O.1
Mckendrick, A.G.2
-
8
-
-
84956971031
-
The threshold of a stochastic delayed SIR epidemic model with temporary immunity
-
[8] Liu, Q., Chen, Q.M., Jiang, D.Q., The threshold of a stochastic delayed SIR epidemic model with temporary immunity. Physica A 450 (2016), 115–125.
-
(2016)
Physica A
, vol.450
, pp. 115-125
-
-
Liu, Q.1
Chen, Q.M.2
Jiang, D.Q.3
-
9
-
-
0037418117
-
An SIRS epidemic model of two competitive species
-
[9] Han, L.T., Ma, Zhien, Shi, T., An SIRS epidemic model of two competitive species. Math. Comput. Modelling 37 (2003), 87–108.
-
(2003)
Math. Comput. Modelling
, vol.37
, pp. 87-108
-
-
Han, L.T.1
Ma, Z.2
Shi, T.3
-
10
-
-
84907056918
-
Further stability analysis for a multi-group SIRS epidemic model with varying total population size
-
[10] Muroya, Y., Kuniya, T., Further stability analysis for a multi-group SIRS epidemic model with varying total population size. Appl. Math. Lett. 38 (2014), 73–78.
-
(2014)
Appl. Math. Lett.
, vol.38
, pp. 73-78
-
-
Muroya, Y.1
Kuniya, T.2
-
11
-
-
67649170450
-
Local and global bifurcations in an SIRS epidemic model
-
[11] Song, Z.G., Xu, J., Li, Q.H., Local and global bifurcations in an SIRS epidemic model. Appl. Math. Comput. 214 (2009), 534–547.
-
(2009)
Appl. Math. Comput.
, vol.214
, pp. 534-547
-
-
Song, Z.G.1
Xu, J.2
Li, Q.H.3
-
12
-
-
0022298258
-
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
-
[12] Liu, W.M., Levin, S.A., Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23 (1986), 187–204.
-
(1986)
J. Math. Biol.
, vol.23
, pp. 187-204
-
-
Liu, W.M.1
Levin, S.A.2
Iwasa, Y.3
-
13
-
-
84901917506
-
The threshold of a stochastic SIRS epidemic model with saturated incidence
-
[13] Zhao, Y.N., Jiang, D.Q., The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34 (2014), 90–93.
-
(2014)
Appl. Math. Lett.
, vol.34
, pp. 90-93
-
-
Zhao, Y.N.1
Jiang, D.Q.2
-
14
-
-
84923789423
-
Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence
-
[14] Liu, Q., Chen, Q.M., Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015), 140–153.
-
(2015)
Physica A
, vol.428
, pp. 140-153
-
-
Liu, Q.1
Chen, Q.M.2
-
15
-
-
77955662616
-
Stability of a novel stochastic epidemic model with double epidemic hypothesis
-
[15] Meng, X.Z., Stability of a novel stochastic epidemic model with double epidemic hypothesis. Appl. Math. Comput. 217 (2010), 506–515.
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 506-515
-
-
Meng, X.Z.1
-
16
-
-
77949274591
-
Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects
-
[16] Meng, X.Z., Li, Z.Q., Wang, X.L., Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects. Nonlinear Dynam. 59 (2010), 503–513.
-
(2010)
Nonlinear Dynam.
, vol.59
, pp. 503-513
-
-
Meng, X.Z.1
Li, Z.Q.2
Wang, X.L.3
-
17
-
-
84868207047
-
Global stability of a multi-group SVIR epidemic model
-
[17] Kuniya, T., Global stability of a multi-group SVIR epidemic model. Nonlinear Anal. RWA 14 (2013), 1135–1143.
-
(2013)
Nonlinear Anal. RWA
, vol.14
, pp. 1135-1143
-
-
Kuniya, T.1
-
19
-
-
84927930873
-
An analogue of break-even concentration in a simple stochastic chemostat model
-
[19] Xu, C.Q., Yuan, S.L., An analogue of break-even concentration in a simple stochastic chemostat model. Appl. Math. Lett. 48 (2015), 62–68.
-
(2015)
Appl. Math. Lett.
, vol.48
, pp. 62-68
-
-
Xu, C.Q.1
Yuan, S.L.2
|