메뉴 건너뛰기




Volumn 4, Issue 1, 2010, Pages 1-25

Kernel regression estimators for nonparametric model calibration in survey sampling

Author keywords

Kernel smoothing; Local linear estimator; Mack M ller estimator; Nadaraya Watson estimator; Nonparametric regression; Residuals

Indexed keywords


EID: 85008844534     PISSN: 15598608     EISSN: 15598616     Source Type: Journal    
DOI: 10.1080/15598608.2010.10411970     Document Type: Article
Times cited : (2)

References (43)
  • 1
    • 0034237942 scopus 로고    scopus 로고
    • Local polynomial regression estimators in survey sampling
    • Breidt, F.J., Opsomer, J.D., 2000. Local polynomial regression estimators in survey sampling. Ann. Statist., 28, 1026–1053.
    • (2000) Ann. Statist. , vol.28 , pp. 1026-1053
    • Breidt, F.J.1    Opsomer, J.D.2
  • 2
    • 27944492025 scopus 로고    scopus 로고
    • Model-assisted estimation in complex surveys using penalised splines
    • Breidt, F.J., Claeskens, G., Opsomer, J.D., 2005. Model-assisted estimation in complex surveys using penalised splines. Biometrika, 92, 831–846.
    • (2005) Biometrika , vol.92 , pp. 831-846
    • Breidt, F.J.1    Claeskens, G.2    Opsomer, J.D.3
  • 3
    • 21144474834 scopus 로고
    • Bias robust estimation in finite populations using nonparametric calibration
    • Chambers, R.L., Dorfman, A.H., Wehrly, T.E., 1993. Bias robust estimation in finite populations using nonparametric calibration. J. Amer. Statist. Assoc., 88, 268–277.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 268-277
    • Chambers, R.L.1    Dorfman, A.H.2    Wehrly, T.E.3
  • 4
    • 1642385945 scopus 로고    scopus 로고
    • Estimation of fish abundance indices based on scientific research trawl surveys
    • Chen, J., Thompson, M.E., Wu, C., 2004. Estimation of fish abundance indices based on scientific research trawl surveys. Biometrics, 60, 116–123.
    • (2004) Biometrics , vol.60 , pp. 116-123
    • Chen, J.1    Thompson, M.E.2    Wu, C.3
  • 5
    • 84972525317 scopus 로고
    • Choosing a kernel regression estimator. Statist
    • Chu, C.-K., Marron, J.S., 1991. Choosing a kernel regression estimator. Statist. Sci., 6, 404–436.
    • (1991) Sci. , vol.6 , pp. 404-436
    • Chu, C.-K.1    Marron, J.S.2
  • 7
    • 35948963794 scopus 로고    scopus 로고
    • A Harvest Strategy Compliant with the Precautionary Approach
    • 2006/023. Available at, accessed April 2009
    • DFO, 2006. A Harvest Strategy Compliant with the Precautionary Approach, DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2006/023. Available at: http://www.dfompo.gc.ca/csas/Csas/status/2006/SAR28 AS2006_023_E.pdf. [accessed April 2009].
    • (2006) DFO Can. Sci. Advis. Sec. Sci. Advis. Rep
  • 9
    • 0001847858 scopus 로고
    • Manual on groundfish surveys in the Northwest Atlantic
    • Doubleday, W.G., 1981. Manual on groundfish surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies, 2, 7–55.
    • (1981) NAFO Sci. Coun. Studies , vol.2 , pp. 7-55
    • Doubleday, W.G.1
  • 12
    • 84950423285 scopus 로고
    • Design-adaptive nonparametric regression
    • Fan, J., 1992. Design-adaptive nonparametric regression. J. Amer. Statist. Assoc., 87, 998–1004.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 998-1004
    • Fan, J.1
  • 13
    • 3042869574 scopus 로고
    • Local linear regression smoothers and their minimax efficiencies
    • Fan, J., 1993. Local linear regression smoothers and their minimax efficiencies. Ann. Statist., 21, 196–216.
    • (1993) Ann. Statist. , vol.21 , pp. 196-216
    • Fan, J.1
  • 15
    • 23744500767 scopus 로고    scopus 로고
    • Regression Estimation for Survey Samples
    • Fuller, W.A., 2002. Regression Estimation for Survey Samples. Surv. Method., 28, 5–23.
    • (2002) Surv. Method , vol.28 , pp. 5-23
    • Fuller, W.A.1
  • 16
    • 0012383639 scopus 로고
    • Kernel estimation of regression functions
    • Gasser, T., Rosenblatt, M. (editors), Berlkin, Springer-Verlag
    • Gasser, T., Müller, H.-G., 1979. Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation, Gasser, T., Rosenblatt, M. (editors), Berlkin, Springer-Verlag, pp. 23-68.
    • (1979) Smoothing Techniques for Curve Estimation , pp. 23-68
    • Gasser, T.1    Müller, H.-G.2
  • 19
    • 0031490739 scopus 로고    scopus 로고
    • Interpolation methods for adapting to sparse design in nonparametric regression
    • Hall, P., Turlach, B.A., 1997. Interpolation methods for adapting to sparse design in nonparametric regression. J. Amer. Statist. Assoc., 92, 466–476.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 466-476
    • Hall, P.1    Turlach, B.A.2
  • 21
    • 21144460067 scopus 로고
    • Kernel regression when the boundary region is large, with an application of testing the adequacy of polynomial models
    • Hart, J.D., Wehrly, T.E., 1992. Kernel regression when the boundary region is large, with an application of testing the adequacy of polynomial models. J. Amer. Statist. Assoc., 87, 1018–1024.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 1018-1024
    • Hart, J.D.1    Wehrly, T.E.2
  • 22
    • 84972525897 scopus 로고
    • Local regression: Automatic kernel carpentry
    • Hastie, T., Loader, C., 1993. Local regression: automatic kernel carpentry. Statist. Sci., 8, 120–143.
    • (1993) Statist. Sci. , vol.8 , pp. 120-143
    • Hastie, T.1    Loader, C.2
  • 24
    • 0000431859 scopus 로고
    • A simple bias reduction method for density estimation
    • Jones, M.C., Linton, O., Nielsen, J.P., 1995. A simple bias reduction method for density estimation. Biometrika, 82, 327–338.
    • (1995) Biometrika , vol.82 , pp. 327-338
    • Jones, M.C.1    Linton, O.2    Nielsen, J.P.3
  • 25
    • 30344465030 scopus 로고    scopus 로고
    • Cross-Validation in Nonparametric Regression With Outliers
    • Leung, D.H.-Y., 2005. Cross-Validation in Nonparametric Regression With Outliers. Ann. Statist., 33, 2291–2310.
    • (2005) Ann. Statist. , vol.33 , pp. 2291-2310
    • Leung, D.H.1
  • 26
    • 0002282191 scopus 로고
    • Derivative estimation in nonparametric regression with random predictor variable
    • Mack, Y.P., Müller, H.-G., 1989. Derivative estimation in nonparametric regression with random predictor variable. Sankhyā Ser. A, 51, 59–72.
    • (1989) Sankhyā Ser , vol.A51 , pp. 59-72
    • Mack, Y.P.1    Müller, H.-G.2
  • 27
    • 0000290034 scopus 로고    scopus 로고
    • Mass recentered kernel smoothers
    • Mammen, E., Marron, J.S., 1997. Mass recentered kernel smoothers. Biometrika, 84, 765–777.
    • (1997) Biometrika , vol.84 , pp. 765-777
    • Mammen, E.1    Marron, J.S.2
  • 28
    • 29144489153 scopus 로고    scopus 로고
    • Non parametric model calibration estimation in survey sampling
    • Montanari, G.E., Ranalli, M.G. 2005. Non parametric model calibration estimation in survey sampling. J. Amer. Statist. Assoc., 100, 1429–1442.
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 1429-1442
    • Montanari, G.E.1    Ranalli, M.G.2
  • 29
    • 38249001241 scopus 로고
    • Identity reproducing multivariate nonparametric regression
    • Müller, H.-G., Song, K.-S., 1993. Identity reproducing multivariate nonparametric regression. J. Multivari26 ate Anal., 46, 237–253.
    • (1993) J. Multivari26 Ate Anal. , vol.46 , pp. 237-253
    • Müller, H.-G.1    Song, K.-S.2
  • 30
    • 0031521321 scopus 로고    scopus 로고
    • Density adjusted kernel smoothers for random design nonparametric regression
    • Müller, H.-G., 1997. Density adjusted kernel smoothers for random design nonparametric regression. Statist. Probab. Lett., 36, 161–172.
    • (1997) Statist. Probab. Lett. , vol.36 , pp. 161-172
    • Müller, H.-G.1
  • 31
    • 0000570382 scopus 로고
    • On estimating regression. Theory Probab
    • Nadaraya, E.A., 1964. On estimating regression. Theory Probab. Appl., 9, 141–142.
    • (1964) Appl. , vol.9 , pp. 141-142
    • Nadaraya, E.A.1
  • 32
    • 20444498711 scopus 로고    scopus 로고
    • Selecting the amount of smoothing in nonparametric regression estimation for complex surveys
    • Opsomer, J.D., Miller, C.P., 2005. Selecting the amount of smoothing in nonparametric regression estimation for complex surveys. J. Nonparametr. Stat., 17, 593–611.
    • (2005) J. Nonparametr. Stat. , vol.17 , pp. 593-611
    • Opsomer, J.D.1    Miller, C.P.2
  • 33
    • 34250738851 scopus 로고    scopus 로고
    • Model-assisted estimation of forest resources with generalized additive models
    • Opsomer, J.D., Breidt, F.J., Moisen, G.G., Kauermann, G., 2007. Model-assisted estimation of forest resources with generalized additive models. J. Amer. Statist. Assoc., 102, 400–409.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 400-409
    • Opsomer, J.D.1    Breidt, F.J.2    Moisen, G.G.3    Kauermann, G.4
  • 34
    • 0031569173 scopus 로고    scopus 로고
    • On identity reproducing nonparametric regression estimators
    • Park, B.U., Kim, W.C., Jones, M.C. (1997a), On identity reproducing nonparametric regression estimators. Statist. Probab. Lett., 32, 279–290.
    • (1997) Statist. Probab. Lett , vol.32 , pp. 279-290
    • Park, B.U.1    Kim, W.C.2    Jones, M.C.3
  • 37
    • 85008854626 scopus 로고    scopus 로고
    • A probabilistic nonparametric estimator. Papeles de Trabajo, No. 2/05
    • Rodríguez, J.G., Salas, R., 2005. A probabilistic nonparametric estimator. Papeles de Trabajo, No. 2/05. Instituto de Estudios Fiscales.
    • (2005) Instituto De Estudios Fiscales.
    • Rodríguez, J.G.1    Salas, R.2
  • 39
    • 0001652945 scopus 로고    scopus 로고
    • Finite-sample variance of local polynomials: Analysis and solutions
    • Seifert, B., Gasser, T., 1996. Finite-sample variance of local polynomials: analysis and solutions. J. Amer. Statist. Assoc., 91, 267–275.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 267-275
    • Seifert, B.1    Gasser, T.2
  • 40
    • 78649378556 scopus 로고    scopus 로고
    • Limits to overfishing: Reference points in the context of the Canadian perspective on the precautionary approach
    • 2002/084. Available at, accessed April 2009
    • Shelton, P.A., Rice, J.C., 2002. Limits to overfishing: reference points in the context of the Canadian perspective on the precautionary approach, DFO Can. Sci. Adv. Sec. Res. Doc. 2002/084. Available at: http://www.dfompo.gc.ca/csas/Csas/DocREC/2002/RES2002_084e.pdf. [accessed April 2009].
    • (2002) DFO Can. Sci. Adv. Sec. Res. Doc
    • Shelton, P.A.1    Rice, J.C.2
  • 42
    • 0025209618 scopus 로고
    • Use of statistical models for the estimation of abundance from ground fish trawl survey data
    • Smith, S.J., 1990. Use of statistical models for the estimation of abundance from ground fish trawl survey data. Can. J. Fish. Aquat. Sci., 47, 894–903.
    • (1990) Can. J. Fish. Aquat. Sci. , vol.47 , pp. 894-903
    • Smith, S.J.1
  • 43
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson, G.S., 1964. Smooth regression analysis. Sankhy Ser. A, 26, 359–372.
    • (1964) Sankhy , vol.26 , pp. 359-372
    • Watson, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.