-
1
-
-
0002934080
-
Orthogonal polynomials and theta functions. In Theta Functions-Bowdoin 1987
-
R.C. Gunning & L. Ehrenpreis), American Mathematical Society
-
Askey, R. (1989). Orthogonal polynomials and theta functions. In Theta Functions-Bowdoin 1987, Proceedings of Symposia in Pure Mathematics 49 (eds: R.C. Gunning & L. Ehrenpreis), pp. 299-321; American Mathematical Society.
-
(1989)
Proceedings of Symposia in Pure Mathematics
, pp. 299-321
-
-
Askey, R.1
-
2
-
-
0001782898
-
From discrete to absolutely continuous solutions of indeterminate moment problems
-
Berg, C. (1998). From discrete to absolutely continuous solutions of indeterminate moment problems. Arab J. Math. Sci. 4 1-18.
-
(1998)
Arab J. Math. Sci
, vol.4
, pp. 1-18
-
-
Berg, C.1
-
3
-
-
0039918596
-
-
Theta Functions; From the Classical to the Modern (ed: M.R. Murty), American Mathematical Society
-
Berndt, B.C. (1993). Ramanujan’s theory of theta-functions. In Theta Functions; From the Classical to the Modern (ed: M.R. Murty), pp. 1-64; American Mathematical Society.
-
(1993)
Ramanujan’s Theory of Theta-Functions
, pp. 1-64
-
-
Berndt, B.C.1
-
4
-
-
0000237092
-
On a property of the lognormal distribution
-
Heyde, C.C. (1963). On a property of the lognormal distribution. J. Roy. Statist. Soc. Ser. B 29 392-393.
-
(1963)
J. Roy. Statist. Soc. Ser. B
, vol.29
, pp. 392-393
-
-
Heyde, C.C.1
-
6
-
-
43049130000
-
Life Distributions
-
Wiley, Hobo-ken, NJ
-
Marshall, A.W. And Olkin, I. (2007). Life Distributions; Structure of Nonparametric, Semiparametric, and Parametric Families. Wiley, Hobo-ken, NJ.
-
(2007)
Structure of Nonparametric, Semiparametric, and Parametric Families
-
-
Marshall, A.W.1
Olkin, I.2
-
7
-
-
34447523267
-
IG-symmetry and R-symmetry: Interrelations and applications to the inverse Gaussian theory
-
Mudholkar, G.S. And Wang, H. (2007). IG-symmetry and R-symmetry: interrelations and applications to the inverse Gaussian theory. J. Statist. Planning Inference 137 3655-3671.
-
(2007)
J. Statist. Planning Inference
, vol.137
, pp. 3655-3671
-
-
Mudholkar, G.S.1
Wang, H.2
-
8
-
-
0030080253
-
Length biasing and laws equivalent to the log-normal
-
Pakes, A.G. (1996). Length biasing and laws equivalent to the log-normal. J. Math. Anal. Applic. 197 825-854.
-
(1996)
J. Math. Anal. Applic
, vol.197
, pp. 825-854
-
-
Pakes, A.G.1
-
9
-
-
33750614189
-
Structure of Stieltjes classes of moment-equivalent probability laws
-
Pakes, A.G. (2007) Structure of Stieltjes classes of moment-equivalent probability laws. J. Math. Anal. Applic. 326 1268-1290.
-
(2007)
J. Math. Anal. Applic
, vol.326
, pp. 1268-1290
-
-
Pakes, A.G.1
-
10
-
-
84985560541
-
Length-biasing, characterization of laws, and the moment problem
-
Pakes, A.G. And Khattree, R. (1992). Length-biasing, characterization of laws, and the moment problem. Austral. J. Statist. 34 307-322.
-
(1992)
Austral J. Statist
, vol.34
, pp. 307-322
-
-
Pakes, A.G.1
Khattree, R.2
-
11
-
-
38149056388
-
On random variables which have the same distribution as their reciprocals
-
Seshadri, V. (1965). On random variables which have the same distribution as their reciprocals. Canad. Math. Bull. 8 819-924.
-
(1965)
Canad. Math. Bull
, vol.8
, pp. 819-924
-
-
Seshadri, V.1
-
13
-
-
4344576375
-
Stieltjes classes for moment-indeterminate probability distributions
-
Stoyanov, J. (2004). Stieltjes classes for moment-indeterminate probability distributions. J. Appl. Probab. 41A 281-294.
-
(2004)
J. Appl. Probab
, vol.41A
, pp. 281-294
-
-
Stoyanov, J.1
|