-
1
-
-
84879311028
-
Development of nanomaterials for bone repair and regeneration
-
[1] McMahon, R.E., Wang, L., Skoracki, R., Mathur, A.B., Development of nanomaterials for bone repair and regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 101 (2013), 387–397.
-
(2013)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.101
, pp. 387-397
-
-
McMahon, R.E.1
Wang, L.2
Skoracki, R.3
Mathur, A.B.4
-
2
-
-
84870992645
-
Perspectives on the role of nanotechnology in bone tissue engineering
-
[2] Saiz, E., Zimmermann, E.A., Lee, J.S., Wegst, U.G.K., Tomsia, A.P., Perspectives on the role of nanotechnology in bone tissue engineering. Dent. Mater. 29 (2013), 103–115.
-
(2013)
Dent. Mater.
, vol.29
, pp. 103-115
-
-
Saiz, E.1
Zimmermann, E.A.2
Lee, J.S.3
Wegst, U.G.K.4
Tomsia, A.P.5
-
3
-
-
84929467729
-
Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices
-
[3] Westhrin, M., et al. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One, 10, 2015, e0120374.
-
(2015)
PLoS One
, vol.10
-
-
Westhrin, M.1
-
4
-
-
58149387662
-
Normal bone anatomy and physiology
-
[4] Clarke, B., Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3:Suppl. 3 (2008), S131–S139.
-
(2008)
Clin. J. Am. Soc. Nephrol.
, vol.3
, pp. S131-S139
-
-
Clarke, B.1
-
5
-
-
85008652698
-
In vitro mineralization of functional polymers
-
[5] Kepa, K., Coleman, R., Grøndahl, L., In vitro mineralization of functional polymers. Biosurf. Biotribol. 1 (2015), 214–227.
-
(2015)
Biosurf. Biotribol.
, vol.1
, pp. 214-227
-
-
Kepa, K.1
Coleman, R.2
Grøndahl, L.3
-
6
-
-
84861048518
-
Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering
-
[6] Baek, J.-Y., et al. Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J. Nanomater. 2012 (2012), 1–11.
-
(2012)
J. Nanomater.
, vol.2012
, pp. 1-11
-
-
Baek, J.-Y.1
-
7
-
-
84896057954
-
Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte-endothelial cell coculture model
-
[7] Liu, X., Sun, J., Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte-endothelial cell coculture model. Int. J. Nanomedicine 9 (2014), 1261–1273.
-
(2014)
Int. J. Nanomedicine
, vol.9
, pp. 1261-1273
-
-
Liu, X.1
Sun, J.2
-
8
-
-
84887118871
-
Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin
-
[8] Huang, Z.-M., et al. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin. Sci. Technol. Adv. Mater., 2016 http://www.tandfonline.com/doi/abs/10.1088/1468-6996/14/5/055001.
-
(2016)
Sci. Technol. Adv. Mater.
-
-
Huang, Z.-M.1
-
9
-
-
84979828884
-
Characterization of an injectable chitosan-demineralized bone matrix hybrid for healing critical-size long-bone defects in a rabbit model
-
[9] Shuang, F., et al. Characterization of an injectable chitosan-demineralized bone matrix hybrid for healing critical-size long-bone defects in a rabbit model. Eur. Rev. Med. Pharmacol. Sci. 18 (2014), 740–752.
-
(2014)
Eur. Rev. Med. Pharmacol. Sci.
, vol.18
, pp. 740-752
-
-
Shuang, F.1
-
11
-
-
33745265629
-
Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics
-
[11] Ungaro, F., et al. Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J. Control. Release 113 (2006), 128–136.
-
(2006)
J. Control. Release
, vol.113
, pp. 128-136
-
-
Ungaro, F.1
-
12
-
-
84896888760
-
Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering
-
[12] Bao, M., et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl. Mater. Interfaces 6 (2014), 2611–2621.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 2611-2621
-
-
Bao, M.1
-
13
-
-
84894178765
-
Bone regeneration potential of the new chitosan-based alloplastic biomaterial
-
[13] Bojar, W., et al. Bone regeneration potential of the new chitosan-based alloplastic biomaterial. J. Biomater. Appl. 28 (2014), 1060–1068.
-
(2014)
J. Biomater. Appl.
, vol.28
, pp. 1060-1068
-
-
Bojar, W.1
-
14
-
-
0034150308
-
The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier
-
[14] Lee, Y.M., et al. The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J. Periodontol. 71 (2000), 418–424.
-
(2000)
J. Periodontol.
, vol.71
, pp. 418-424
-
-
Lee, Y.M.1
-
15
-
-
80053568285
-
An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo
-
[15] Ghanaati, S., et al. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomater. 7 (2011), 4018–4028.
-
(2011)
Acta Biomater.
, vol.7
, pp. 4018-4028
-
-
Ghanaati, S.1
-
16
-
-
67650679564
-
In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization
-
[16] Keskar, V., Marion, N.W., Mao, J.J., Gemeinhart, R.A., In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng. Part A 15 (2009), 1695–1707.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 1695-1707
-
-
Keskar, V.1
Marion, N.W.2
Mao, J.J.3
Gemeinhart, R.A.4
-
17
-
-
78349309536
-
An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects
-
[17] Kolambkar, Y.M., et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32 (2011), 65–74.
-
(2011)
Biomaterials
, vol.32
, pp. 65-74
-
-
Kolambkar, Y.M.1
-
18
-
-
79251547045
-
A conceptually new type of bio-hybrid scaffold for bone regeneration
-
[18] Tampieri, A., et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology, 22, 2011, 015104.
-
(2011)
Nanotechnology
, vol.22
, pp. 015104
-
-
Tampieri, A.1
-
19
-
-
78649629524
-
Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications
-
[19] Zimmermann, K.A., LeBlanc, J.M., Sheets, K.T., Fox, R.W., Gatenholm, P., Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater. Sci. Eng. C 31 (2011), 43–49.
-
(2011)
Mater. Sci. Eng. C
, vol.31
, pp. 43-49
-
-
Zimmermann, K.A.1
LeBlanc, J.M.2
Sheets, K.T.3
Fox, R.W.4
Gatenholm, P.5
-
20
-
-
84929603616
-
Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
-
[20] Luo, Y., Lode, A., Akkineni, A.R., Gelinsky, M., Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 5 (2015), 43480–43488.
-
(2015)
RSC Adv.
, vol.5
, pp. 43480-43488
-
-
Luo, Y.1
Lode, A.2
Akkineni, A.R.3
Gelinsky, M.4
-
21
-
-
84896588824
-
Hierarchically engineered fibrous scaffolds for bone regeneration
-
[21] Sachot, N., Castaño, O., Mateos-Timoneda, M.A., Engel, E., Planell, J.A., Hierarchically engineered fibrous scaffolds for bone regeneration. J. R. Soc. Interface, 10, 2013, 20130684.
-
(2013)
J. R. Soc. Interface
, vol.10
, pp. 20130684
-
-
Sachot, N.1
Castaño, O.2
Mateos-Timoneda, M.A.3
Engel, E.4
Planell, J.A.5
-
22
-
-
84881022355
-
Cytotoxicity tests of cellulose nanofibril-based structures
-
[22] Alexandrescu, L., Syverud, K., Gatti, A., Chinga-Carrasco, G., Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20 (2013), 1765–1775.
-
(2013)
Cellulose
, vol.20
, pp. 1765-1775
-
-
Alexandrescu, L.1
Syverud, K.2
Gatti, A.3
Chinga-Carrasco, G.4
-
23
-
-
84924665067
-
PCL/PVA nanoencapsulated reinforcing fillers of steam exploded/autoclaved cellulose nanofibrils for tissue engineering applications
-
[23] Manhas, N., Balasubramanian, K., Prajith, P., Rule, P., Nimje, S., PCL/PVA nanoencapsulated reinforcing fillers of steam exploded/autoclaved cellulose nanofibrils for tissue engineering applications. RSC Adv. 5 (2015), 23999–24008.
-
(2015)
RSC Adv.
, vol.5
, pp. 23999-24008
-
-
Manhas, N.1
Balasubramanian, K.2
Prajith, P.3
Rule, P.4
Nimje, S.5
-
24
-
-
84910153534
-
Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates
-
[24] Zander, N.E., Dong, H., Steele, J., Grant, J.T., Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl. Mater. Interfaces 6 (2014), 18502–18510.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 18502-18510
-
-
Zander, N.E.1
Dong, H.2
Steele, J.3
Grant, J.T.4
-
25
-
-
84870248889
-
Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture
-
[25] Bhattacharya, M., et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release 164 (2012), 291–298.
-
(2012)
J. Control. Release
, vol.164
, pp. 291-298
-
-
Bhattacharya, M.1
-
26
-
-
84867864462
-
Nanofibrillar cellulose films for controlled drug delivery
-
Off. J. Arbeitsgemeinschaft für Pharm. Verfahrenstechnik
-
[26] Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T., Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 82 (2012), 308–315 Off. J. Arbeitsgemeinschaft für Pharm. Verfahrenstechnik.
-
(2012)
Eur. J. Pharm. Biopharm.
, vol.82
, pp. 308-315
-
-
Kolakovic, R.1
Peltonen, L.2
Laukkanen, A.3
Hirvonen, J.4
Laaksonen, T.5
-
27
-
-
84907528052
-
Technetium-99 m-labeled nanofibrillar cellulose hydrogel for in vivo drug release
-
[27] Laurén, P., et al. Technetium-99 m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur. J. Pharm. Sci. 65 (2014), 79–88.
-
(2014)
Eur. J. Pharm. Sci.
, vol.65
, pp. 79-88
-
-
Laurén, P.1
-
28
-
-
84896773409
-
Cellulose nanofibrils
-
[28] Zhang, Y., et al. Cellulose nanofibrils. J. Renew. Mater. 1 (2013), 195–211.
-
(2013)
J. Renew. Mater.
, vol.1
, pp. 195-211
-
-
Zhang, Y.1
-
29
-
-
84908644241
-
Nanocellulose in biomedicine: current status and future prospect
-
[29] Lin, N., Dufresne, A., Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59 (2014), 302–325.
-
(2014)
Eur. Polym. J.
, vol.59
, pp. 302-325
-
-
Lin, N.1
Dufresne, A.2
-
30
-
-
84925503397
-
Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose
-
[30] Čolić, M., Mihajlović, D., Mathew, A., Naseri, N., Kokol, V., Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose 22 (2014), 763–778.
-
(2014)
Cellulose
, vol.22
, pp. 763-778
-
-
Čolić, M.1
Mihajlović, D.2
Mathew, A.3
Naseri, N.4
Kokol, V.5
-
31
-
-
84955488655
-
3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance
-
[31] Naseri, N., et al. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv. 6 (2016), 5999–6007.
-
(2016)
RSC Adv.
, vol.6
, pp. 5999-6007
-
-
Naseri, N.1
-
32
-
-
84908644241
-
Nanocellulose in biomedicine: current status and future prospect
-
[32] Lin, N., Dufresne, A., Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59 (2014), 302–325.
-
(2014)
Eur. Polym. J.
, vol.59
, pp. 302-325
-
-
Lin, N.1
Dufresne, A.2
-
33
-
-
84921461435
-
Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug
-
[33] El-Fiqi, A., Kim, J.H., Kim, H.W., Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl. Mater. Interfaces 7 (2015), 1140–1152.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 1140-1152
-
-
El-Fiqi, A.1
Kim, J.H.2
Kim, H.W.3
-
34
-
-
84908069195
-
Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology
-
[34] Gorgieva, S., Strancar, J., Kokol, V., Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology. J. Biomed. Mater. Res. A, 2014, 10.1002/jbm.a.35076.
-
(2014)
J. Biomed. Mater. Res. A
-
-
Gorgieva, S.1
Strancar, J.2
Kokol, V.3
-
35
-
-
84922972172
-
Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release
-
[35] Gorgieva, S., Kokol, V., Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res. A 103 (2015), 1119–1130.
-
(2015)
J. Biomed. Mater. Res. A
, vol.103
, pp. 1119-1130
-
-
Gorgieva, S.1
Kokol, V.2
-
36
-
-
80052774257
-
Simulated biological fluids with possible application in dissolution testing
-
[36] Marques, M.R.C., Loebenberg, R., Almukainzi, M., Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol. 18 (2011), 15–28.
-
(2011)
Dissolut. Technol.
, vol.18
, pp. 15-28
-
-
Marques, M.R.C.1
Loebenberg, R.2
Almukainzi, M.3
-
37
-
-
84948421885
-
Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles
-
[37] Ye, C., Malak, S.T., Hu, K., Wu, W., Tsukruk, V.V., Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles. ACS Nano 9 (2015), 10887–10895.
-
(2015)
ACS Nano
, vol.9
, pp. 10887-10895
-
-
Ye, C.1
Malak, S.T.2
Hu, K.3
Wu, W.4
Tsukruk, V.V.5
-
38
-
-
81555220906
-
Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration
-
[38] Saska, S., et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int. J. Biomater. 2011 (2011), 1–8.
-
(2011)
Int. J. Biomater.
, vol.2011
, pp. 1-8
-
-
Saska, S.1
-
39
-
-
0004231121
-
A Guide to Organophosphorus Chemistry
-
John Wiley & Sons
-
[39] Quin, L.D., A Guide to Organophosphorus Chemistry. 2000, John Wiley & Sons https://books.google.com/books?id=3ATQyjZBjy0C&pgis=1.
-
(2000)
-
-
Quin, L.D.1
-
40
-
-
84946532343
-
Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose
-
[40] Gorgieva, S., Vogrinčič, R., Kokol, V., Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose. Cellulose 22 (2015), 3541–3558.
-
(2015)
Cellulose
, vol.22
, pp. 3541-3558
-
-
Gorgieva, S.1
Vogrinčič, R.2
Kokol, V.3
-
41
-
-
77951868199
-
Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites
-
[41] Verma, D., Katti, K.S., Katti, D.R., Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites. Philos. Transact. A Math. Phys. Eng. Sci. 368 (2010), 2083–2097.
-
(2010)
Philos. Transact. A Math. Phys. Eng. Sci.
, vol.368
, pp. 2083-2097
-
-
Verma, D.1
Katti, K.S.2
Katti, D.R.3
-
42
-
-
27944497333
-
Tissue cells feel and respond to the stiffness of their substrate
-
[42] Discher, D.E., Janmey, P., Wang, Y.-L., Tissue cells feel and respond to the stiffness of their substrate. Science 310 (2005), 1139–1143.
-
(2005)
Science
, vol.310
, pp. 1139-1143
-
-
Discher, D.E.1
Janmey, P.2
Wang, Y.-L.3
-
43
-
-
84888098643
-
Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment
-
[43] Chen, G., et al. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment. Curr. Stem Cell Res. Ther. 8 (2013), 313–323.
-
(2013)
Curr. Stem Cell Res. Ther.
, vol.8
, pp. 313-323
-
-
Chen, G.1
-
44
-
-
84940467063
-
Stem cell mechanobiology: diverse lessons from bone marrow
-
[44] Ivanovska, I.L., Shin, J.-W., Swift, J., Discher, D.E., Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol. 25 (2015), 523–532.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 523-532
-
-
Ivanovska, I.L.1
Shin, J.-W.2
Swift, J.3
Discher, D.E.4
-
45
-
-
76649104718
-
Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in?
-
[45] Buxboim, A., Ivanovska, I.L., Discher, D.E., Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in?. J. Cell Sci. 123 (2010), 297–308.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 297-308
-
-
Buxboim, A.1
Ivanovska, I.L.2
Discher, D.E.3
-
46
-
-
84893815784
-
Scaffold design for bone regeneration
-
[46] Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E., Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14 (2014), 15–56.
-
(2014)
J. Nanosci. Nanotechnol.
, vol.14
, pp. 15-56
-
-
Polo-Corrales, L.1
Latorre-Esteves, M.2
Ramirez-Vick, J.E.3
-
47
-
-
80052096397
-
Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications
-
[47] Plieva, F.M., Kirsebom, H., Mattiasson, B., Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications. J. Sep. Sci. 34 (2011), 2164–2172.
-
(2011)
J. Sep. Sci.
, vol.34
, pp. 2164-2172
-
-
Plieva, F.M.1
Kirsebom, H.2
Mattiasson, B.3
-
48
-
-
84876336871
-
Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration
-
[48] Allo, B.A., Costa, D.O., Dixon, S.J., Mequanint, K., Rizkalla, A.S., Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J. Funct. Biomater. 3 (2012), 432–463.
-
(2012)
J. Funct. Biomater.
, vol.3
, pp. 432-463
-
-
Allo, B.A.1
Costa, D.O.2
Dixon, S.J.3
Mequanint, K.4
Rizkalla, A.S.5
-
49
-
-
84924341136
-
Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering
-
[49] Nadeem, D., et al. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering. Biofabrication, 7, 2015, 015005.
-
(2015)
Biofabrication
, vol.7
, pp. 015005
-
-
Nadeem, D.1
-
50
-
-
84881027724
-
Electrospun fibers as a scaffolding platform for bone tissue repair
-
[50] Lyu, S., Huang, C., Yang, H., Zhang, X., Electrospun fibers as a scaffolding platform for bone tissue repair. J. Orthop. Res. 31 (2013), 1382–1389.
-
(2013)
J. Orthop. Res.
, vol.31
, pp. 1382-1389
-
-
Lyu, S.1
Huang, C.2
Yang, H.3
Zhang, X.4
-
51
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
[51] Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Matrix elasticity directs stem cell lineage specification. Cell 126 (2006), 677–689.
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
52
-
-
84948579342
-
Structural properties of scaffolds: crucial parameters towards stem cells differentiation
-
[52] Ghasemi-Mobarakeh, L., et al. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. J. Stem Cells 7 (2015), 728–744.
-
(2015)
J. Stem Cells
, vol.7
, pp. 728-744
-
-
Ghasemi-Mobarakeh, L.1
-
53
-
-
84863126110
-
Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites
-
[53] Ten, E., Bahr, D.F., Li, B., Jiang, L., Wolcott, M.P., Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind. Eng. Chem. Res. 51 (2012), 2941–2951.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 2941-2951
-
-
Ten, E.1
Bahr, D.F.2
Li, B.3
Jiang, L.4
Wolcott, M.P.5
-
54
-
-
84908064464
-
Molecular mobility of scaffolds’ biopolymers influences cell growth
-
[54] Podlipec, R., et al. Molecular mobility of scaffolds’ biopolymers influences cell growth. ACS Appl. Mater. Interfaces 6 (2014), 15980–15990.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 15980-15990
-
-
Podlipec, R.1
-
55
-
-
84868316802
-
Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers
-
[55] Dash, R., Foston, M., Ragauskas, A.J., Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr. Polym. 91 (2013), 638–645.
-
(2013)
Carbohydr. Polym.
, vol.91
, pp. 638-645
-
-
Dash, R.1
Foston, M.2
Ragauskas, A.J.3
-
56
-
-
84954226193
-
Cellulose nanofibrils and mechanism of their mineralization in biomimetic synthesis of hydroxyapatite/native bacterial cellulose nanocomposites: molecular dynamics simulations
-
[56] Lukasheva, N.V., Tolmachev, D.A., Cellulose nanofibrils and mechanism of their mineralization in biomimetic synthesis of hydroxyapatite/native bacterial cellulose nanocomposites: molecular dynamics simulations. Langmuir 32 (2015), 125–134.
-
(2015)
Langmuir
, vol.32
, pp. 125-134
-
-
Lukasheva, N.V.1
Tolmachev, D.A.2
-
57
-
-
84939932834
-
Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose
-
[57] Kokol, V., Božič, M., Vogrinčič, R., Mathew, A.P., Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr. Polym. 125 (2015), 301–313.
-
(2015)
Carbohydr. Polym.
, vol.125
, pp. 301-313
-
-
Kokol, V.1
Božič, M.2
Vogrinčič, R.3
Mathew, A.P.4
-
58
-
-
84865684049
-
Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers
-
[58] Li, K., Wang, J., Liu, X., Xiong, X., Liu, H., Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Carbohydr. Polym. 90 (2012), 1573–1581.
-
(2012)
Carbohydr. Polym.
, vol.90
, pp. 1573-1581
-
-
Li, K.1
Wang, J.2
Liu, X.3
Xiong, X.4
Liu, H.5
-
59
-
-
67649458062
-
Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone
-
[59] Liu, X.S., Zhang, X.H., Guo, X.E., Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone 45 (2009), 158–163.
-
(2009)
Bone
, vol.45
, pp. 158-163
-
-
Liu, X.S.1
Zhang, X.H.2
Guo, X.E.3
-
60
-
-
84883170273
-
Development of composite scaffolds for load-bearing segmental bone defects
-
[60] Pilia, M., Guda, T., Appleford, M., Development of composite scaffolds for load-bearing segmental bone defects. Biomed. Res. Int., 2013(458253), 2013.
-
(2013)
Biomed. Res. Int.
, vol.2013
-
-
Pilia, M.1
Guda, T.2
Appleford, M.3
-
61
-
-
84857088946
-
Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche
-
[61] Birmingham, E., et al. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater. 23 (2012), 13–27.
-
(2012)
Eur. Cell. Mater.
, vol.23
, pp. 13-27
-
-
Birmingham, E.1
-
62
-
-
84874343832
-
Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells
-
[62] Matsuoka, F., et al. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS One, 8, 2013, e55082.
-
(2013)
PLoS One
, vol.8
-
-
Matsuoka, F.1
-
63
-
-
84874546617
-
Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization
-
[63] Silvent, J., et al. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. PLoS One, 8, 2013, e57344.
-
(2013)
PLoS One
, vol.8
-
-
Silvent, J.1
-
64
-
-
84885649975
-
Extracellular matrix control of collagen mineralization in vitro
-
[64] Lausch, A.J., Quan, B.D., Miklas, J.W., Sone, E.D., Extracellular matrix control of collagen mineralization in vitro. Adv. Funct. Mater. 23 (2013), 4906–4912.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 4906-4912
-
-
Lausch, A.J.1
Quan, B.D.2
Miklas, J.W.3
Sone, E.D.4
-
65
-
-
84865530416
-
The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation
-
[65] Boonrungsiman, S., et al. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 14170–14175.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 14170-14175
-
-
Boonrungsiman, S.1
|