메뉴 건너뛰기




Volumn 26, Issue 1, 2017, Pages 356-373

Frailty modeling for clustered competing risks data with missing cause of failure

Author keywords

cause specific hazards; competing risks; frailty model; hierarchical likelihood; missing at random; multiple imputation

Indexed keywords

AGED; ARTICLE; BLADDER CANCER; CANCER GRADING; CANCER MORTALITY; CAUSE OF DEATH; CONFIDENCE INTERVAL; CONTROLLED STUDY; FEMALE; FRAILTY; HUMAN; INCIDENCE; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MALE; MEASUREMENT ERROR; NULL HYPOTHESIS; PROPORTIONAL HAZARDS MODEL; RISK ASSESSMENT; STATISTICAL BIAS; BLADDER TUMOR; CLINICAL TRIAL (TOPIC); MORTALITY; MULTICENTER STUDY (TOPIC); PATHOLOGY; PROCEDURES; RISK; SAMPLE SIZE; STATISTICAL MODEL;

EID: 85008613411     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280214545639     Document Type: Article
Times cited : (15)

References (40)
  • 1
    • 0018503089 scopus 로고
    • The impact of heterogeneity in individual frailty on the dynamics of mortality
    • Vaupel J, Manton K, Stallard E,. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 1979; 16: 439-454.
    • (1979) Demography , vol.16 , pp. 439-454
    • Vaupel, J.1    Manton, K.2    Stallard, E.3
  • 4
    • 0842303548 scopus 로고    scopus 로고
    • Modelling clustered survival data from multicentre clinical trials
    • Glidden DV, Vittinghoff E,. Modelling clustered survival data from multicentre clinical trials. Stat Med 2004; 23: 369-388.
    • (2004) Stat Med , vol.23 , pp. 369-388
    • Glidden, D.V.1    Vittinghoff, E.2
  • 5
    • 0034736561 scopus 로고    scopus 로고
    • Proportional hazards model with random effects
    • Vaida F, Xu R,. Proportional hazards model with random effects. Stat Med 2001; 19: 3309-3324.
    • (2001) Stat Med , vol.19 , pp. 3309-3324
    • Vaida, F.1    Xu, R.2
  • 6
    • 70349249575 scopus 로고    scopus 로고
    • Asymptotic properties and empirical evaluation of the NPMLE in the proportional hazards mixed-effects model
    • Gamst A, Donohue M, Xu R,. Asymptotic properties and empirical evaluation of the NPMLE in the proportional hazards mixed-effects model. Stat Sin 2009; 19: 997-1011.
    • (2009) Stat Sin , vol.19 , pp. 997-1011
    • Gamst, A.1    Donohue, M.2    Xu, R.3
  • 7
    • 85199986075 scopus 로고    scopus 로고
    • Hierarchical generalized linear models (with discussion)
    • Lee Y, Nelder JA,. Hierarchical generalized linear models (with discussion). J R Stat Soc B 1996; 58: 619-678.
    • (1996) J R Stat Soc B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 8
    • 0012232570 scopus 로고    scopus 로고
    • Hierarchical likelihood approach for frailty models
    • Ha ID, Lee Y, Song JK,. Hierarchical likelihood approach for frailty models. Biometrika 2001; 88: 233-243.
    • (2001) Biometrika , vol.88 , pp. 233-243
    • Ha, I.D.1    Lee, Y.2    Song, J.K.3
  • 9
    • 79952586078 scopus 로고    scopus 로고
    • Marginal models for clustered time-to-event data with competing risks using pseudovalues
    • Logan BR, Zhang M-J, Klein JP,. Marginal models for clustered time-to-event data with competing risks using pseudovalues. Biometrics 2011; 67: 1-7.
    • (2011) Biometrics , vol.67 , pp. 1-7
    • Logan, B.R.1    Zhang, M.-J.2    Klein, J.P.3
  • 10
    • 33845868557 scopus 로고    scopus 로고
    • Analysing multicentre competing risk data with a mixed proportional hazards model for the subdistribution
    • Katsahian S, Resche-Rigon M, Chevret S, et al. Analysing multicentre competing risk data with a mixed proportional hazards model for the subdistribution. Stat Med 2006; 25: 4267-4278.
    • (2006) Stat Med , vol.25 , pp. 4267-4278
    • Katsahian, S.1    Resche-Rigon, M.2    Chevret, S.3
  • 11
    • 84948426838 scopus 로고    scopus 로고
    • Frailties in multi-state models: Are they identifiable? do we need them?
    • Putter H, van Houwelingen HC,. Frailties in multi-state models: are they identifiable? do we need them? Stat Methods Med Res. 2015; 24: 675-692.
    • (2015) Stat Methods Med Res , vol.24 , pp. 675-692
    • Putter, H.1    Van Houwelingen, H.C.2
  • 12
    • 0018080123 scopus 로고
    • The analysis of failure times in the presence of competing risks
    • Prentice RL, Kalbfleisch JD, Peterson AV, et al. The analysis of failure times in the presence of competing risks. Biometrics 1978; 34: 541-554.
    • (1978) Biometrics , vol.34 , pp. 541-554
    • Prentice, R.L.1    Kalbfleisch, J.D.2    Peterson, A.V.3
  • 14
    • 0029829610 scopus 로고    scopus 로고
    • Missing cause of death information in the analysis of survival data
    • Andersen J, Goetghebeur E, Ryan L,. Missing cause of death information in the analysis of survival data. Stat Med 1996; 15: 2191-2201.
    • (1996) Stat Med , vol.15 , pp. 2191-2201
    • Andersen, J.1    Goetghebeur, E.2    Ryan, L.3
  • 15
    • 0006753881 scopus 로고
    • Analysis of competing risks survival data when some failure types are missing
    • Goetghebeur E, Ryan L,. Analysis of competing risks survival data when some failure types are missing. Biometrika 1995; 82: 821-834.
    • (1995) Biometrika , vol.82 , pp. 821-834
    • Goetghebeur, E.1    Ryan, L.2
  • 16
    • 0035190476 scopus 로고    scopus 로고
    • Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure
    • Lu K, Tsiatis AA,. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics 2001; 57: 1191-1197.
    • (2001) Biometrics , vol.57 , pp. 1191-1197
    • Lu, K.1    Tsiatis, A.A.2
  • 17
    • 27944480944 scopus 로고    scopus 로고
    • Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure
    • Gao G, Tsiatis AA,. Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure. Biometrika 2005; 92: 875-891.
    • (2005) Biometrika , vol.92 , pp. 875-891
    • Gao, G.1    Tsiatis, A.A.2
  • 18
    • 43049139553 scopus 로고    scopus 로고
    • Analysis of competing risks data with missing cause of failure under additive hazards model
    • Lu W, Liang Y,. Analysis of competing risks data with missing cause of failure under additive hazards model. Stat Sin 2008; 18: 219-234.
    • (2008) Stat Sin , vol.18 , pp. 219-234
    • Lu, W.1    Liang, Y.2
  • 19
    • 78650240622 scopus 로고    scopus 로고
    • Modelling competing risks data with missing cause of failure
    • Bakoyannis G, Siannis F, Touloumi G,. Modelling competing risks data with missing cause of failure. Stat Med 2010; 29: 3172-3185.
    • (2010) Stat Med , vol.29 , pp. 3172-3185
    • Bakoyannis, G.1    Siannis, F.2    Touloumi, G.3
  • 20
    • 84948416369 scopus 로고    scopus 로고
    • Vertical modeling: Analysis of competing risks data with missing causes of failure
    • Nicolaie MA, Houwelingen HC, Putter H,. Vertical modeling: analysis of competing risks data with missing causes of failure. Stat Methods Med Res. 2015; 24: 891-908.
    • (2015) Stat Methods Med Res , vol.24 , pp. 891-908
    • Nicolaie, M.A.1    Houwelingen, H.C.2    Putter, H.3
  • 21
    • 84880044183 scopus 로고    scopus 로고
    • Regression modeling of the cumulative incidence function with missing causes of failure using pseudo-values
    • Moreno-Betancur M, Latouche A,. Regression modeling of the cumulative incidence function with missing causes of failure using pseudo-values. Stat Med 2013; 32: 3206-3223.
    • (2013) Stat Med , vol.32 , pp. 3206-3223
    • Moreno-Betancur, M.1    Latouche, A.2
  • 23
    • 79960025400 scopus 로고    scopus 로고
    • Frailty modelling for survival data from multi-centre clinical trials
    • Ha ID, Sylvester RJ, Legrand C, et al. Frailty modelling for survival data from multi-centre clinical trials. Stat Med 2011; 30: 2144-2159.
    • (2011) Stat Med , vol.30 , pp. 2144-2159
    • Ha, I.D.1    Sylvester, R.J.2    Legrand, C.3
  • 24
    • 0015980662 scopus 로고
    • Covariance analysis of censored survival data
    • Breslow NE,. Covariance analysis of censored survival data. Biometrics 1974; 30: 89-99.
    • (1974) Biometrics , vol.30 , pp. 89-99
    • Breslow, N.E.1
  • 25
    • 0033635611 scopus 로고    scopus 로고
    • Estimation of multivariate frailty models using penalized partial likelihood
    • Ripatti S, Palmgren J,. Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 2000; 56: 1016-1022.
    • (2000) Biometrics , vol.56 , pp. 1016-1022
    • Ripatti, S.1    Palmgren, J.2
  • 27
    • 0141742204 scopus 로고    scopus 로고
    • Estimating frailty models via Poisson hierarchical generalized linear models
    • Ha ID, Lee Y,. Estimating frailty models via Poisson hierarchical generalized linear models. J Comput Graph Stat 2003; 12: 663-681.
    • (2003) J Comput Graph Stat , vol.12 , pp. 663-681
    • Ha, I.D.1    Lee, Y.2
  • 28
    • 0012342630 scopus 로고    scopus 로고
    • Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions
    • Lee Y, Nelder JA,. Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika 2001; 88: 987-1006.
    • (2001) Biometrika , vol.88 , pp. 987-1006
    • Lee, Y.1    Nelder, J.A.2
  • 30
    • 14944375730 scopus 로고    scopus 로고
    • Multilevel mixed linear models for survival data
    • Ha ID, Lee Y,. Multilevel mixed linear models for survival data. Lifetime Data Anal 2005; 11: 131-142.
    • (2005) Lifetime Data Anal , vol.11 , pp. 131-142
    • Ha, I.D.1    Lee, Y.2
  • 31
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB,. Inference and missing data. Biometrika 1976; 63: 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 32
    • 0025801348 scopus 로고
    • Multiple imputation in health-care databases: An overview and some applications
    • Rubin DB, Schenker N,. Multiple imputation in health-care databases: an overview and some applications. Stat Med 1991; 15: 585-598.
    • (1991) Stat Med , vol.15 , pp. 585-598
    • Rubin, D.B.1    Schenker, N.2
  • 33
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins JM, Wang N,. Inference for imputation estimators. Biometrika 2000; 87: 113-124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 34
    • 84972537494 scopus 로고
    • Multiple imputation inferences with uncongenial sources of input (with discussion)
    • Meng XL,. Multiple imputation inferences with uncongenial sources of input (with discussion). Stat Sci 1994; 9: 538-573.
    • (1994) Stat Sci , vol.9 , pp. 538-573
    • Meng, X.L.1
  • 35
    • 0030852901 scopus 로고    scopus 로고
    • Adjuvant chemotherapy for superficial transitional cell bladder carcinoma: Long-term results of a European Organization for Research and Treatment of Cancer randomized trial comparing doxorubicin, ethoglucid and transurethral resection alone
    • Kurth K, Tunn U, Ay R, et al. Adjuvant chemotherapy for superficial transitional cell bladder carcinoma: long-term results of a European Organization for Research and Treatment of Cancer randomized trial comparing doxorubicin, ethoglucid and transurethral resection alone. J Urol 1997; 158: 378-384.
    • (1997) J Urol , vol.158 , pp. 378-384
    • Kurth, K.1    Tunn, U.2    Ay, R.3
  • 36
    • 32944465832 scopus 로고    scopus 로고
    • Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials
    • Sylvester RJ, van der Meijden APM, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006; 49: 466-477.
    • (2006) Eur Urol , vol.49 , pp. 466-477
    • Sylvester, R.J.1    Van Der Meijden, A.P.M.2    Oosterlinck, W.3
  • 37
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self SG, Liang KY,. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 1987; 82: 605-610.
    • (1987) J Am Stat Assoc , vol.82 , pp. 605-610
    • Self, S.G.1    Liang, K.Y.2
  • 38
    • 79959354598 scopus 로고    scopus 로고
    • Frailty-based competing risks model for multivariate survival data
    • Gorfine M, Hsu L,. Frailty-based competing risks model for multivariate survival data. Biometrics 2011; 67: 415-426.
    • (2011) Biometrics , vol.67 , pp. 415-426
    • Gorfine, M.1    Hsu, L.2
  • 39
    • 84995802687 scopus 로고    scopus 로고
    • Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties
    • Ha ID, Christian NJ, Jeong J-H, et al. Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties. Stat Methods Med Res. 2016; 25: 2488-2505.
    • (2016) Stat Methods Med Res , vol.25 , pp. 2488-2505
    • Ha, I.D.1    Christian, N.J.2    Jeong, J.-H.3
  • 40
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine JP, Gray RJ,. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999; 94: 496-509.
    • (1999) J Am Stat Assoc , vol.94 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.