메뉴 건너뛰기




Volumn 20, Issue 2, 2012, Pages 486-498

Transcribing Meetings with the AMIDA Systems

Author keywords

AMI corpus; Juicer; meeting transcription; multiple distant microphone; resource optimisation; rich text

Indexed keywords


EID: 85008520364     PISSN: 15587916     EISSN: 15587924     Source Type: Journal    
DOI: 10.1109/TASL.2011.2163395     Document Type: Article
Times cited : (114)

References (34)
  • 1
    • 85008533443 scopus 로고    scopus 로고
    • RT-2002 Evaluation Plan (Version 1. 0)
    • [Online]. Available: http://www.itl.nist.gov/iad/mig//tests/rt/2002/index.html
    • J. Fiscus and J. Garofolo, “RT-2002 Evaluation Plan (Version 1. 0),” NIST, 2002 [Online]. Available: http://www.itl.nist.gov/iad/mig//tests/rt/2002/index.html.
    • (2002) NIST
    • Fiscus, J.1    Garofolo, J.2
  • 3
    • 44849090969 scopus 로고    scopus 로고
    • Recognition and understanding of meetings: The AMI and AMIDA projects
    • S. Renals, T. Hain, and H. Bourlard, “Recognition and understanding of meetings: The AMI and AMIDA projects,” in Proc. ASRU′07, 2007, pp. 238–247.
    • (2007) Proc. ASRU′07 , pp. 238-247
    • Renals, S.1    Hain, T.2    Bourlard, H.3
  • 7
    • 85009275134 scopus 로고    scopus 로고
    • The ISL meeting corpus: The impact of meeting type on speech style
    • S. Burger, V. MacLaren, and H. Yu, “The ISL meeting corpus: The impact of meeting type on speech style,” in Proc. ICSLP, 2002.
    • (2002) Proc. ICSLP
    • Burger, S.1    MacLaren, V.2    Yu, H.3
  • 11
    • 33947697215 scopus 로고    scopus 로고
    • Strategies for language model web-data collection
    • V. Wan and T. Hain, “Strategies for language model web-data collection,” in Proc. ICASSP′06, 2006, pp. 1069–1072.
    • (2006) Proc. ICASSP′06 , pp. 1069-1072
    • Wan, V.1    Hain, T.2
  • 13
    • 47749119617 scopus 로고    scopus 로고
    • The ICSI RT07s speaker diariza-tion system
    • ser. LNCS. New York: Springer-Verlag
    • C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diariza-tion system,” in Machine Learning for Multimodal Interaction, ser. LNCS. New York: Springer-Verlag, 2007, vol. 4625, pp. 509–519.
    • (2007) Machine Learning for Multimodal Interaction , vol.4625 , pp. 509-519
    • Wooters, C.1    Huijbregts, M.2
  • 16
    • 44949090835 scopus 로고    scopus 로고
    • Getting more mileage from web text sources for conversational speech language modeling using class-dependent mixtures
    • I. Bulyko, M. Ostendorf, and A. Stolcke, “Getting more mileage from web text sources for conversational speech language modeling using class-dependent mixtures,” in Proc. Human Lang. Technol. Conf., 2003.
    • (2003) Proc. Human Lang. Technol. Conf.
    • Bulyko, I.1    Ostendorf, M.2    Stolcke, A.3
  • 19
    • 40249083942 scopus 로고    scopus 로고
    • The segmentation of multi-channel meeting recordings for automatic speech recognition
    • J. Dines, J. Vepa, and T. Hain, “The segmentation of multi-channel meeting recordings for automatic speech recognition,” Proc. Inter-speech′06, 2006.
    • (2006) Proc. Inter-speech′06
    • Dines, J.1    Vepa, J.2    Hain, T.3
  • 20
    • 44849123928 scopus 로고    scopus 로고
    • Robust speaker diarization for meetings
    • Ph. D. dissertation, UPC, Barcelona, Spain
    • X. Anguera, “Robust speaker diarization for meetings,” Ph. D. dissertation, UPC, Barcelona, Spain, 2006.
    • (2006)
    • Anguera, X.1
  • 21
    • 77249176190 scopus 로고    scopus 로고
    • The AMI speaker diarization system for IST RT06s meeting data
    • D. A. van Leeuwen and M. Huijbregts, “The AMI speaker diarization system for IST RT06s meeting data,” in Proc. MLMI′06, 2006, pp. 371–384.
    • (2006) Proc. MLMI′06 , pp. 371-384
    • van Leeuwen, D.A.1    Huijbregts, M.2
  • 22
    • 4544265717 scopus 로고    scopus 로고
    • Discriminative Training for Large Vocabulary Speech, Recognition
    • Ph. D. dissertation, Cambridge Univ., Cambridge, U. K.
    • D. Povey, “Discriminative Training for Large Vocabulary Speech, Recognition,” Ph. D. dissertation, Cambridge Univ., Cambridge, U. K., 2004.
    • (2004)
    • Povey, D.1
  • 25
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
    • Apr.
    • J. -L. Gauvain and C. -H. Lee, “Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains,” IEEE Trans. Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.
    • (1994) IEEE Trans. Speech Audio Process. , vol.2 , Issue.2 , pp. 291-298
    • Gauvain, J.-L.1    Lee, C.-H.2
  • 26
    • 0003871508 scopus 로고    scopus 로고
    • Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition
    • Ph. D. dissertation, John Hopkins Univ., Baltimore, MD
    • N. Kumar, “Investigation of silicon-auditory models and generalization of linear discriminant analysis for improved speech recognition,” Ph. D. dissertation, John Hopkins Univ., Baltimore, MD, 1997.
    • (1997)
    • Kumar, N.1
  • 27
    • 70450211380 scopus 로고    scopus 로고
    • Investigation into bottle-neck features for meeting speech recognition
    • F. Grezl, M. Karafiat, and L. Burget, “Investigation into bottle-neck features for meeting speech recognition,” in Proc. Interspeech′09, 2009, no. 9, pp. 2947–2950.
    • (2009) Proc. Interspeech′09 , Issue.9 , pp. 2947-2950
    • Grezl, F.1    Karafiat, M.2    Burget, L.3
  • 28
    • 33745211419 scopus 로고    scopus 로고
    • Improvements to fMPE for discriminative training of features
    • D. Povey, “Improvements to fMPE for discriminative training of features,” in Proc. Interspeech, 2005, pp. 2977–2980.
    • (2005) Proc. Interspeech , pp. 2977-2980
    • Povey, D.1
  • 29
    • 44949102463 scopus 로고    scopus 로고
    • Recent progress on the discriminative region-dependent transform for speech feature extraction
    • B. Zhang, S. Matsoukas, and R. Schwartz, “Recent progress on the discriminative region-dependent transform for speech feature extraction,” in Proc. Interspeech′06, 2006.
    • (2006) Proc. Interspeech′06
    • Zhang, B.1    Matsoukas, S.2    Schwartz, R.3
  • 32
    • 74549128196 scopus 로고    scopus 로고
    • Automatic optimisation of speech decoder parameters
    • A. E. Hannani and T. Hain, “Automatic optimisation of speech decoder parameters,” IEEESignalProcessingLetters, vol. 17, pp. 95–98, 2010.
    • (2010) IEEESignalProcessingLetters , vol.17 , pp. 95-98
    • Hannani, A.E.1    Hain, T.2
  • 33
    • 0030263447 scopus 로고    scopus 로고
    • Mean and variance adaptation within the MLLR framework
    • M. J. Gales and P. Woodland, “Mean and variance adaptation within the MLLR framework,” Comput. Speech Lang., vol. 10, pp. 249–264, 1996.
    • (1996) Comput. Speech Lang. , vol.10 , pp. 249-264
    • Gales, M.J.1    Woodland, P.2
  • 34
    • 85008521982 scopus 로고    scopus 로고
    • The rich transcription 2007 meeting recognition evaluation
    • ser. Lecture Notes in Computer Science. New York: Springer-Verlag
    • J. G. Fiscus, J. Ajot, and J. S. Garofolo, “The rich transcription 2007 meeting recognition evaluation,” in Machine Learning for Multimodal Interaction, ser. Lecture Notes in Computer Science. New York: Springer-Verlag, 2007.
    • (2007) Machine Learning for Multimodal Interaction
    • Fiscus, J.G.1    Ajot, J.2    Garofolo, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.