메뉴 건너뛰기




Volumn 2, Issue 2, 2002, Pages 171-185

Superconvergence postprocessing for eigenvalues

Author keywords

Eigenvalue problems; Finite element method; Postprocessing; Superconvergence

Indexed keywords


EID: 85008503246     PISSN: 16094840     EISSN: 16099389     Source Type: Journal    
DOI: 10.2478/cmam-2002-0011     Document Type: Article
Times cited : (30)

References (29)
  • 1
    • 33645622650 scopus 로고
    • Superconvergence of the gradient of finite element eigenfunctions
    • A. B. Andreev, Superconvergence of the gradient of finite element eigenfunctions, C. R. Acad. Bulgare Sci., 43 (1990), pp. 9-11.
    • (1990) C. R. Acad. Bulgare Sci. , vol.43 , pp. 9-11
    • Andreev, A.B.1
  • 2
    • 84985385618 scopus 로고
    • Superconvergence of the gradient for quadratic triangular finite elements
    • A. B. Andreev and R. D. Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods for PDEs, 4 (1988), pp. 15-32.
    • (1988) Numer. Methods for PDEs , vol.4 , pp. 15-32
    • Andreev, A.B.1    Lazarov, R.D.2
  • 5
    • 0001968761 scopus 로고
    • Validation of recipes for the recovery of stresses and derivatives by a computer-based approach
    • I. Babuska, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj, Validation of recipes for the recovery of stresses and derivatives by a computer-based approach, Math. Comput. Mode., 20 (1994), p. 45.
    • (1994) Math. Comput. Mode. , vol.20 , pp. 45
    • Babuska, I.1    Strouboulis, T.2    Upadhyay, C.S.3    Gangaraj, S.K.4
  • 6
    • 0000958140 scopus 로고    scopus 로고
    • Computer-based proof of the existence of superconvergence points in, the finite element method; Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's and the elasticity equations
    • I. Babuska, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in, the finite element method; Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's and the elasticity equations, Numer. Methods for PDEs, 12 (1996), pp. 347-392.
    • (1996) Numer. Methods for PDEs , vol.12 , pp. 347-392
    • Babuska, I.1    Strouboulis, T.2    Upadhyay, C.S.3    Gangaraj, S.K.4
  • 9
    • 0001309976 scopus 로고
    • The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators
    • F. Chatelin, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators, SIAM Rev., 23 (1981), pp. 495-522.
    • (1981) SIAM Rev. , vol.23 , pp. 495-522
    • Chatelin, F.1
  • 12
    • 0001324638 scopus 로고    scopus 로고
    • Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds
    • B. Garcia Archilla, J. Novo, and E. S. Titi, Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds, SIAM J. Numer. Anal., 35 (1998), pp. 941-972.
    • (1998) SIAM J. Numer. Anal. , vol.35 , pp. 941-972
    • Archilla, B.G.1    Titi, E.S.2
  • 13
    • 0038855060 scopus 로고    scopus 로고
    • An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations
    • B. Garcia Archilla, J. Novo, and E. S. Titi, An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations, Math. of Comput., 68 (1999), No. 227, pp. 893-911.
    • (1999) Math. of Comput. , vol.68 , Issue.227 , pp. 893-911
    • Archilla, B.G.1    Novo, J.2    Titi, E.S.3
  • 14
    • 0000051734 scopus 로고    scopus 로고
    • Postprocessing the Galerkin Method: The finite element case
    • B. Garcia Archilla and E. S. Titi, Postprocessing the Galerkin Method: The finite element case, SIAM J. Numer. Anal., 37 (2000), pp. 470-499.
    • (2000) SIAM J. Numer. Anal. , vol.37 , pp. 470-499
    • Archilla, B.G.1    Titi, E.S.2
  • 15
    • 0024914257 scopus 로고
    • A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations
    • G. Goodsell and J. R. Whiteman, A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations, Internat. J. Numer. Methods. Eng., 27 (1989), pp. 469-481.
    • (1989) Internat. J. Numer. Methods. Eng. , vol.27 , pp. 469-481
    • Goodsell, G.1    Whiteman, J.R.2
  • 17
    • 0002122189 scopus 로고
    • Superconvergence phenomenon in the finite element method arising from averaging gradients
    • M. Krizek and P. Neittaanmaki, Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 45 (1984), pp. 105-116.
    • (1984) Numer. Math. , vol.45 , pp. 105-116
    • Krizek, M.1    Neittaanmaki, P.2
  • 18
    • 0033311670 scopus 로고    scopus 로고
    • The post-processed Galerkin method applied to nonlinear shell vibrations
    • C. R. Laing, A. McRobie, and J. M. T. Thompson, The post-processed Galerkin method applied to nonlinear shell vibrations, Dynam. Stability Systems., 14 (1999), pp. 166-181.
    • (1999) Dynam. Stability Systems. , vol.14 , pp. 166-181
    • Laing, C.R.1    McRobie, A.2    Thompson, J.M.T.3
  • 19
    • 0034448598 scopus 로고    scopus 로고
    • A posteriori and a priori error analysis for finite element approximations of self-adjoint eigenvalue problems
    • M. G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), pp. 608-625.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 608-625
    • Larson, M.G.1
  • 20
    • 0022734898 scopus 로고
    • Optimal isoparametric finite elements and error estimates for domains involving curved boundaries
    • M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal., 23 (1986), No. 3, pp. 562-580.
    • (1986) SIAM J. Numer. Anal. , vol.23 , Issue.3 , pp. 562-580
    • Lenoir, M.1
  • 21
    • 0012184756 scopus 로고
    • Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: Improved error bounds for eigenfunctions
    • J. Pierce and R. S. Varga, Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: Improved error bounds for eigenfunctions, Numer. Math., 19 (1972), pp. 155-169.
    • (1972) Numer. Math. , vol.19 , pp. 155-169
    • Pierce, J.1    Varga, R.S.2
  • 24
    • 0001725828 scopus 로고    scopus 로고
    • Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point
    • A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), pp. 505-521.
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 505-521
    • Schatz, A.H.1    Sloan, I.H.2    Wahlbin, L.B.3
  • 26
    • 84968521915 scopus 로고
    • A posteriori error estimates for nonlinear problems. Finite elements discretizations of elliptic equations
    • R. Verfurth, A posteriori error estimates for nonlinear problems. Finite elements discretizations of elliptic equations, Math. Comp., 62 (1994), pp. 445-475.
    • (1994) Math. Comp. , vol.62 , pp. 445-475
    • Verfurth, R.1
  • 27
    • 0001547745 scopus 로고
    • Two-mesh discretization techniques for linear and nonlinear problems
    • J. Xu, Two-mesh discretization techniques for linear and nonlinear problems, SIAM J. Numer. Anal., 33 (1966), pp. 1759-1777.
    • (1966) SIAM J. Numer. Anal. , vol.33 , pp. 1759-1777
    • Xu, J.1
  • 29
    • 0026981573 scopus 로고
    • The superconvergence patch-recovery (SPR) and adaptive finite element refinement
    • O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch-recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Eng., 101 (1992), pp. 207-224.
    • (1992) Comput. Methods Appl. Mech. Eng. , vol.101 , pp. 207-224
    • Zienkiewicz, O.C.1    Zhu, J.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.