메뉴 건너뛰기




Volumn 20, Issue 4, 2000, Pages 395-400

On the role of space dimension n = 2 + 2y/2 in the semilinear brezis-nirenberg eigenvalue problem 1

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85008371419     PISSN: 01744747     EISSN: 21966753     Source Type: Journal    
DOI: 10.1524/anly.2000.20.4.395     Document Type: Article
Times cited : (15)

References (19)
  • 1
    • 0000620761 scopus 로고
    • A note on the problem-Au = \u + u\u\2 2
    • A. Ambrosetti, M. Struwe, A note on the problem-Au = \u + u\u\2 2, Manusc. Math. 54,373–379 (1986).
    • (1986) Manusc. Math. , vol.54 , pp. 373-379
    • Ambrosetti, A.1    Struwe, M.2
  • 2
    • 0008116538 scopus 로고    scopus 로고
    • Some results on p-Laplace equations with a critical growth term
    • G. Arioli, F. Gazzola, Some results on p-Laplace equations with a critical growth term, Diff. Int. Eq. 11,311–326(1998).
    • (1998) Diff. Int. Eq. , vol.11 , pp. 311-326
    • Arioli, G.1    Gazzola, F.2
  • 3
    • 38249017964 scopus 로고
    • Nodal solutions of elliptic equations with critical Sobolev exponents
    • F.V. Atkinson, H. Brezis, L.A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J Diff. Eq. 85, 151–171 (1990).
    • (1990) J Diff. Eq. , vol.85 , pp. 151-171
    • Atkinson, F.V.1    Brezis, H.2    Peletier, L.A.3
  • 4
    • 84974750492 scopus 로고
    • Large solutions of elliptic equations involving critical exponents
    • F.V. Atkinson, L.A. Peletier, Large solutions of elliptic equations involving critical exponents, Asymptotic Anal. 1, 139–160(1988).
    • (1988) Asymptotic Anal. , vol.1 , pp. 139-160
    • Atkinson, F.V.1    Peletier, L.A.2
  • 5
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl Math. 36, 437–477 (1983).
    • (1983) Comm. Pure Appl Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 6
    • 85012023027 scopus 로고
    • An existence result for nonlinear elliptic problems involving critical Sobolev exponent
    • non lineaire
    • A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincare, Anal, non lineaire 2, 463–470 (1985).
    • (1985) Ann. Inst. H. Poincare, Anal , vol.2 , pp. 463-470
    • Capozzi, A.1    Fortunato, D.2    Palmieri, G.3
  • 7
    • 0000734186 scopus 로고
    • Some existence results for superlinear elliptic boundary value problems involving critical exponents
    • G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funet. Anal. 69, 289–306 (1986).
    • (1986) J. Funet. Anal. , vol.69 , pp. 289-306
    • Cerami, G.1    Solimini, S.2    Struwe, M.3
  • 8
    • 0000454829 scopus 로고
    • Critical exponents, critical dimensions and the biharmonic operator
    • D.E. Edmunds, D. Fortunato, E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rat. Mech. Anal. 112, 269–289 (1990).
    • (1990) Arch. Rat. Mech. Anal. , vol.112 , pp. 269-289
    • Edmunds, D.E.1    Fortunato, D.2    Jannelli, E.3
  • 9
    • 0000583948 scopus 로고
    • Elliptic boundary value problems with singular coefficients and critical nonlinearities
    • H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. J. 38, 235–251 (1989).
    • (1989) Indiana Univ. Math. J. , vol.38 , pp. 235-251
    • Egnell, H.1
  • 11
    • 84976114794 scopus 로고
    • Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains
    • D. Fortunato, E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh A 105,205–213 (1987).
    • (1987) Proc. Roy. Soc. Edinburgh A , vol.105 , pp. 205-213
    • Fortunato, D.1    Jannelli, E.2
  • 12
    • 22044454196 scopus 로고    scopus 로고
    • Critical growth problems for polyharmonic operators
    • F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh A 128, 251–263(1998).
    • (1998) Proc. Roy. Soc. Edinburgh A , vol.128 , pp. 251-263
    • Gazzola, F.1
  • 13
    • 85026024908 scopus 로고    scopus 로고
    • Critical dimensions and higher order Sobolev inequalities with remainder terms
    • to appear
    • F. Gazzola, H. Ch. Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, Noniin. Diff. Eq. Appl., to appear.
    • Noniin. Diff. Eq. Appl.
    • Gazzola, F.1    Grunau, H.C.2
  • 14
    • 0008025841 scopus 로고    scopus 로고
    • Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations
    • F. Gazzola, B. Ruf, Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Diff. Eq. 4, 555–572 (1997).
    • (1997) Adv. Diff. Eq. , vol.4 , pp. 555-572
    • Gazzola, F.1    Ruf, B.2
  • 15
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68,209–243 (1979).
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 17
    • 0042299884 scopus 로고    scopus 로고
    • On a conjecture of P. Pucci and J. Serrin
    • H. C. Grunau, On a conjecture of P. Pucci and J. Serrin, Analysis 16,399–403 (1996).
    • (1996) Analysis , vol.16 , pp. 399-403
    • Grunau, H.C.1
  • 18
    • 0002490825 scopus 로고
    • Critical exponents and critical dimensions for polyharmonic operators
    • P. Pucci, J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl 69,55–83 (1990).
    • (1990) J. Math. Pures Appl , vol.69 , pp. 55-83
    • Pucci, P.1    Serrin, J.2
  • 19
    • 38249024923 scopus 로고
    • On multiple solutions of Au+Au+|u|4n_2)ii = 0
    • D. Zhang, On multiple solutions of Au+Au+|u|4n_2)ii = 0, Noniin. Anal. TMA 13,353–372(1989).
    • (1989) Noniin. Anal. TMA , vol.13 , pp. 353-372
    • Zhang, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.