-
1
-
-
84922574747
-
Multivariate calibration of first-order data with the correlation constrained MCR-ALS method
-
[1] Ahmadi, G., Tauler, R., Abdollahi, H., Multivariate calibration of first-order data with the correlation constrained MCR-ALS method. Chemom. Intell. Lab. Syst. 142 (2015), 143–150.
-
(2015)
Chemom. Intell. Lab. Syst.
, vol.142
, pp. 143-150
-
-
Ahmadi, G.1
Tauler, R.2
Abdollahi, H.3
-
2
-
-
34247350310
-
Near-infrared spectroscopy applications in pharmaceutical analysis
-
[2] Luypaert, J., Massart, D.L., Heyden, Y.V., Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72 (2007), 865–883.
-
(2007)
Talanta
, vol.72
, pp. 865-883
-
-
Luypaert, J.1
Massart, D.L.2
Heyden, Y.V.3
-
3
-
-
84962672555
-
Simultaneous spectrophotometric quantification of dinitrobenzene isomers in water samples using multivariate calibration methods
-
[3] Lu, T., Yuan, Y., Jiao, Y., Wen, Z.N., Wang, L., Zhao, Y.H., Zhang, Y.X., Li, M.L., Pu, X.M., Xu, T., Simultaneous spectrophotometric quantification of dinitrobenzene isomers in water samples using multivariate calibration methods. Chemom. Intell. Lab. Syst. 154 (2016), 72–79.
-
(2016)
Chemom. Intell. Lab. Syst.
, vol.154
, pp. 72-79
-
-
Lu, T.1
Yuan, Y.2
Jiao, Y.3
Wen, Z.N.4
Wang, L.5
Zhao, Y.H.6
Zhang, Y.X.7
Li, M.L.8
Pu, X.M.9
Xu, T.10
-
4
-
-
84996593791
-
Variable space boosting partial least squares for multivariate calibration of near infrared spectroscopy
-
[4] Bian, X.H., Li, S.J., Shao, X.G., Liu, P., Variable space boosting partial least squares for multivariate calibration of near infrared spectroscopy. Chemom. Intell. Lab. Syst., 2016, 10.1016/j.chemolab.2016.08.005.
-
(2016)
Chemom. Intell. Lab. Syst.
-
-
Bian, X.H.1
Li, S.J.2
Shao, X.G.3
Liu, P.4
-
5
-
-
70349396621
-
Multivariate concentration determination using principal component regression with residual analysis
-
[5] Keithley, R.B., Heien, M.L., Wightman, R.M., Multivariate concentration determination using principal component regression with residual analysis. Trac-Trends Anal. Chem. 28 (2009), 1127–1136.
-
(2009)
Trac-Trends Anal. Chem.
, vol.28
, pp. 1127-1136
-
-
Keithley, R.B.1
Heien, M.L.2
Wightman, R.M.3
-
6
-
-
84949238988
-
The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework
-
[6] Lin, Y.W., Deng, B.C., Xu, Q.S., Yun, Y.H., Liang, Y.Z., The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework. Chemom. Intell. Lab. Syst. 150 (2016), 58–64.
-
(2016)
Chemom. Intell. Lab. Syst.
, vol.150
, pp. 58-64
-
-
Lin, Y.W.1
Deng, B.C.2
Xu, Q.S.3
Yun, Y.H.4
Liang, Y.Z.5
-
7
-
-
0035965476
-
PLS-regression: a basic tool of chemometrics
-
[7] Wold, S., Sjostrom, M., Eriksson, L., PLS-regression: a basic tool of chemometrics. Chemom. Intel. Lab. Syst. 58 (2001), 109–130.
-
(2001)
Chemom. Intel. Lab. Syst.
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjostrom, M.2
Eriksson, L.3
-
8
-
-
84978389793
-
Determination of protein secondary structure from infrared spectra using partial least-squares regression
-
[8] Wilcox, K.E., Blanch, E.W., Doig, A.J., Determination of protein secondary structure from infrared spectra using partial least-squares regression. Biochemistry 55 (2016), 3794–3802.
-
(2016)
Biochemistry
, vol.55
, pp. 3794-3802
-
-
Wilcox, K.E.1
Blanch, E.W.2
Doig, A.J.3
-
9
-
-
11044235779
-
Application of PLS and back-propagation neural networks for the estimation of soil properties
-
[9] Ramadan, Z., Hopke, P.K., Johnson, M.J., Scow, K.M., Application of PLS and back-propagation neural networks for the estimation of soil properties. Chemom. Intel. Lab. Syst. 75 (2005), 23–30.
-
(2005)
Chemom. Intel. Lab. Syst.
, vol.75
, pp. 23-30
-
-
Ramadan, Z.1
Hopke, P.K.2
Johnson, M.J.3
Scow, K.M.4
-
10
-
-
84929511086
-
Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network
-
[10] da Rocha, R.A., Paiva, I.M., Anjos, V., Furtado, M.A.M., Bell, M.J.V., Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network. J. Dairy Sci. 98 (2015), 3559–3567.
-
(2015)
J. Dairy Sci.
, vol.98
, pp. 3559-3567
-
-
da Rocha, R.A.1
Paiva, I.M.2
Anjos, V.3
Furtado, M.A.M.4
Bell, M.J.V.5
-
11
-
-
3042551400
-
Multivariate calibration with least-squares support vector machines
-
[11] Thissen, U., Ustun, B., Melssen, W.J., Buydens, L.M.C., Multivariate calibration with least-squares support vector machines. Anal. Chem. 76 (2004), 3099–3105.
-
(2004)
Anal. Chem.
, vol.76
, pp. 3099-3105
-
-
Thissen, U.1
Ustun, B.2
Melssen, W.J.3
Buydens, L.M.C.4
-
12
-
-
84881609100
-
Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression
-
[12] Luo, R.M., Tan, S.M., Zhou, Y.P., Liu, S.J., Xu, H., Song, D.D., Cui, Y.F., Fu, H.Y., Yang, T.M., Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression. J. Chemom. 27 (2013), 198–206.
-
(2013)
J. Chemom.
, vol.27
, pp. 198-206
-
-
Luo, R.M.1
Tan, S.M.2
Zhou, Y.P.3
Liu, S.J.4
Xu, H.5
Song, D.D.6
Cui, Y.F.7
Fu, H.Y.8
Yang, T.M.9
-
13
-
-
33745903481
-
Extreme learning machine: theory and applications
-
[13] Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
14
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
[14] Huang, G.B., Zhou, H.M., Ding, X.J., Zhang, R., Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 42 (2012), 513–529.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part B-Cybern.
, vol.42
, pp. 513-529
-
-
Huang, G.B.1
Zhou, H.M.2
Ding, X.J.3
Zhang, R.4
-
15
-
-
84961193652
-
A novel grouping genetic algorithm-extreme learning machine approach for global solar radiation prediction from numerical weather models inputs
-
[15] Aybar-Ruiz, A., Jimenez-Fernandez, S., Cornejo-Bueno, L., Casanova-Mateo, C., Sanz-Justo, J., Salvador-Gonzalez, P., Salcedo-Sanz, S., A novel grouping genetic algorithm-extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol. Energy 132 (2016), 129–142.
-
(2016)
Sol. Energy
, vol.132
, pp. 129-142
-
-
Aybar-Ruiz, A.1
Jimenez-Fernandez, S.2
Cornejo-Bueno, L.3
Casanova-Mateo, C.4
Sanz-Justo, J.5
Salvador-Gonzalez, P.6
Salcedo-Sanz, S.7
-
16
-
-
84962783538
-
Forecasting daily streamflow using online sequential extreme learning machines
-
[16] Lima, A.R., Cannon, A.J., Hsieh, W.W., Forecasting daily streamflow using online sequential extreme learning machines. J. Hydrol. 537 (2016), 431–443.
-
(2016)
J. Hydrol.
, vol.537
, pp. 431-443
-
-
Lima, A.R.1
Cannon, A.J.2
Hsieh, W.W.3
-
17
-
-
56049098499
-
Sales forecasting using extreme learning machine with applications in fashion retailing
-
[17] Sun, Z.L., Choi, T.M., Au, K.F., Yu, Y., Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 46 (2008), 411–419.
-
(2008)
Decis. Support Syst.
, vol.46
, pp. 411-419
-
-
Sun, Z.L.1
Choi, T.M.2
Au, K.F.3
Yu, Y.4
-
18
-
-
84971607430
-
Extreme learning machine for prediction of heat load in district heating systems
-
[18] Sajjadi, S., Shamshirband, S., Alizamir, M., Yee, P.L., Mansor, Z., Manaf, A.A., Altameem, T.A., Mostafaeipour, A., Extreme learning machine for prediction of heat load in district heating systems. Energy Build. 122 (2016), 222–227.
-
(2016)
Energy Build.
, vol.122
, pp. 222-227
-
-
Sajjadi, S.1
Shamshirband, S.2
Alizamir, M.3
Yee, P.L.4
Mansor, Z.5
Manaf, A.A.6
Altameem, T.A.7
Mostafaeipour, A.8
-
19
-
-
55949118135
-
A protein secondary structure prediction framework based on the extreme learning machine
-
[19] Wang, G.R., Zhao, Y., Wang, D., A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 72 (2008), 262–268.
-
(2008)
Neurocomputing
, vol.72
, pp. 262-268
-
-
Wang, G.R.1
Zhao, Y.2
Wang, D.3
-
20
-
-
84950341558
-
An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
-
[20] Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B., Wang, S.J., An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease. Neurocomputing 184 (2016), 131–144.
-
(2016)
Neurocomputing
, vol.184
, pp. 131-144
-
-
Chen, H.L.1
Wang, G.2
Ma, C.3
Cai, Z.N.4
Liu, W.B.5
Wang, S.J.6
-
21
-
-
84870784748
-
Combination of activation functions in extreme learning machines for multivariate calibration
-
[21] Peng, J.T., Li, L.Q., Tang, Y.Y., Combination of activation functions in extreme learning machines for multivariate calibration. Chemom. Intel. Lab. Syst. 120 (2013), 53–58.
-
(2013)
Chemom. Intel. Lab. Syst.
, vol.120
, pp. 53-58
-
-
Peng, J.T.1
Li, L.Q.2
Tang, Y.Y.3
-
22
-
-
84889686095
-
A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis
-
[22] AlHichri, H., Bazi, Y., Alajlan, N., Melgani, F., Malek, S., Yager, R.R., A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis. J. Chemom. 27 (2013), 447–456.
-
(2013)
J. Chemom.
, vol.27
, pp. 447-456
-
-
AlHichri, H.1
Bazi, Y.2
Alajlan, N.3
Melgani, F.4
Malek, S.5
Yager, R.R.6
-
23
-
-
84960425810
-
Calibration transfer via an extreme learning machine auto-encoder
-
[23] Chen, W.R., Bin, J., Lu, H.M., Zhang, Z.M., Liang, Y.Z., Calibration transfer via an extreme learning machine auto-encoder. Analyst 141 (2016), 1973–1980.
-
(2016)
Analyst
, vol.141
, pp. 1973-1980
-
-
Chen, W.R.1
Bin, J.2
Lu, H.M.3
Zhang, Z.M.4
Liang, Y.Z.5
-
24
-
-
84879534401
-
Qualitative and quantitative analysis in solid-state fermentation of protein feed by FT-NIR spectroscopy integrated with multivariate data analysis
-
[24] Jiang, H., Liu, G.H., Mei, C.L., Chen, Q.S., Qualitative and quantitative analysis in solid-state fermentation of protein feed by FT-NIR spectroscopy integrated with multivariate data analysis. Anal. Methods 5 (2013), 1872–1880.
-
(2013)
Anal. Methods
, vol.5
, pp. 1872-1880
-
-
Jiang, H.1
Liu, G.H.2
Mei, C.L.3
Chen, Q.S.4
-
25
-
-
84974710812
-
Spectral quantitative analysis of complex samples based on the extreme learning machine
-
[25] Bian, X.H., Li, S.J., Meng, M.R., Guo, Y.G., Chang, N., Wang, J.J., Spectral quantitative analysis of complex samples based on the extreme learning machine. Anal. Methods 8 (2016), 4674–46799.
-
(2016)
Anal. Methods
, vol.8
, pp. 4674-46799
-
-
Bian, X.H.1
Li, S.J.2
Meng, M.R.3
Guo, Y.G.4
Chang, N.5
Wang, J.J.6
-
26
-
-
84893651131
-
Dissimilarity based ensemble of extreme learning machine for gene expression data classification
-
[26] Lu, H.J., An, C.L., Zheng, E.H., Lu, Y., Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128 (2014), 22–30.
-
(2014)
Neurocomputing
, vol.128
, pp. 22-30
-
-
Lu, H.J.1
An, C.L.2
Zheng, E.H.3
Lu, Y.4
-
27
-
-
84886235407
-
A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra
-
[27] Li, Y.K., Jing, J., A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra. Chemom. Intell. Lab. Syst. 130 (2014), 45–49.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.130
, pp. 45-49
-
-
Li, Y.K.1
Jing, J.2
-
28
-
-
77952548488
-
An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
-
[28] Shao, X.G., Bian, X.H., Cai, W.S., An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 666 (2010), 32–37.
-
(2010)
Anal. Chim. Acta
, vol.666
, pp. 32-37
-
-
Shao, X.G.1
Bian, X.H.2
Cai, W.S.3
-
29
-
-
79955366049
-
A robust boosting regression tree with applications in quantitative structure-activity relationship studies of organic compounds
-
[29] Jiao, J., Tan, S.M., Luo, R.M., Zhou, Y.P., A robust boosting regression tree with applications in quantitative structure-activity relationship studies of organic compounds. J. Chem. Inf. Model. 51 (2011), 816–828.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 816-828
-
-
Jiao, J.1
Tan, S.M.2
Luo, R.M.3
Zhou, Y.P.4
-
30
-
-
84969277735
-
ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting
-
[30] Wang, N.N., Dong, J., Deng, Y.H., Zhu, M.F., Wen, M., Yao, Z.J., Lu, A.P., Wang, J.B., Cao, D.S., ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf. Model. 56 (2016), 763–773.
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 763-773
-
-
Wang, N.N.1
Dong, J.2
Deng, Y.H.3
Zhu, M.F.4
Wen, M.5
Yao, Z.J.6
Lu, A.P.7
Wang, J.B.8
Cao, D.S.9
-
31
-
-
84992311939
-
High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples
-
[31] Bian, X.H., Li, S.J., Lin, L.G., Tan, X.Y., Fan, Q.J., Li, M., High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples. Anal. Chim. Acta 925 (2016), 16–22.
-
(2016)
Anal. Chim. Acta
, vol.925
, pp. 16-22
-
-
Bian, X.H.1
Li, S.J.2
Lin, L.G.3
Tan, X.Y.4
Fan, Q.J.5
Li, M.6
-
32
-
-
0030211964
-
Bagging predictors
-
[32] Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
33
-
-
33947320459
-
A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
-
[33] Li, Y.K., Shao, X.G., Cai, W.S., A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72 (2007), 217–222.
-
(2007)
Talanta
, vol.72
, pp. 217-222
-
-
Li, Y.K.1
Shao, X.G.2
Cai, W.S.3
-
34
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
[34] Niu, D.P., Wang, F.L., Zhang, L.L., He, D.K., Jia, M.X., Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 105 (2011), 125–130.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 125-130
-
-
Niu, D.P.1
Wang, F.L.2
Zhang, L.L.3
He, D.K.4
Jia, M.X.5
-
35
-
-
84871935564
-
A consensus modeling approach to update a spectroscopic calibration
-
[35] Shahbazikhah, P., Kalivas, J.H., A consensus modeling approach to update a spectroscopic calibration. Chemom. Intell. Lab. Syst. 120 (2013), 142–153.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.120
, pp. 142-153
-
-
Shahbazikhah, P.1
Kalivas, J.H.2
-
36
-
-
84887725182
-
Ensemble independent component regression models and soft sensing application
-
[36] Ge, Z.Q., Song, Z.H., Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 130 (2014), 115–122.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.130
, pp. 115-122
-
-
Ge, Z.Q.1
Song, Z.H.2
-
37
-
-
84952926812
-
Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square
-
[37] He, Y.L., Geng, Z.Q., Zhu, Q.X., Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square. Chemom. Intell. Lab. Syst. 151 (2016), 78–88.
-
(2016)
Chemom. Intell. Lab. Syst.
, vol.151
, pp. 78-88
-
-
He, Y.L.1
Geng, Z.Q.2
Zhu, Q.X.3
-
38
-
-
0043289776
-
Analyzing bagging
-
[38] Buhlmann, P., Yu, B., Analyzing bagging. Ann. Stat. 30 (2002), 927–961.
-
(2002)
Ann. Stat.
, vol.30
, pp. 927-961
-
-
Buhlmann, P.1
Yu, B.2
-
39
-
-
81155130606
-
Effect of the subsampling ratio in the application of subagging for multivariate calibration with the successive projections algorithm
-
[39] Galvao Filho, A.R., Galvao, R.K.H., Araujo, M.C.U., Effect of the subsampling ratio in the application of subagging for multivariate calibration with the successive projections algorithm. J. Braz. Chem. Soc. 22 (2011), 2225–2233.
-
(2011)
J. Braz. Chem. Soc.
, vol.22
, pp. 2225-2233
-
-
Galvao Filho, A.R.1
Galvao, R.K.H.2
Araujo, M.C.U.3
-
40
-
-
33644848401
-
An application of subagging for the improvement of prediction accuracy of multivariate calibration models
-
[40] Galvao, R.K.H., Araujo, M.C.U., Martins, M.D.N., Jose, G.E., Pontes, M.J.C., Silva, E.C., Saldanha, T.C.B., An application of subagging for the improvement of prediction accuracy of multivariate calibration models. Chemom. Intell. Lab. Syst. 81 (2006), 60–67.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.81
, pp. 60-67
-
-
Galvao, R.K.H.1
Araujo, M.C.U.2
Martins, M.D.N.3
Jose, G.E.4
Pontes, M.J.C.5
Silva, E.C.6
Saldanha, T.C.B.7
-
41
-
-
67650511905
-
Combined prediction model based on partial least squares regression and its application to near infrared spectroscopy quantitative analysis
-
[41] Cheng, Z., Zhu, A.S., Chen, D.Z., Combined prediction model based on partial least squares regression and its application to near infrared spectroscopy quantitative analysis. Chin. J. Anal. Chem. 35 (2007), 978–982.
-
(2007)
Chin. J. Anal. Chem.
, vol.35
, pp. 978-982
-
-
Cheng, Z.1
Zhu, A.S.2
Chen, D.Z.3
-
42
-
-
78650948925
-
Bagging for robust non-linear multivariate calibration of spectroscopy
-
[42] Wang, K., Chen, T., Lau, R., Bagging for robust non-linear multivariate calibration of spectroscopy. Chemom. Intell. Lab. Syst. 105 (2011), 1–6.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.105
, pp. 1-6
-
-
Wang, K.1
Chen, T.2
Lau, R.3
-
43
-
-
84911003647
-
Behavior-aware user response modeling in social media: learning from diverse heterogeneous data
-
[43] Chen, Z.Y., Fan, Z.P., Sun, M.H., Behavior-aware user response modeling in social media: learning from diverse heterogeneous data. Eur. J. Oper. Res. 241 (2015), 422–434.
-
(2015)
Eur. J. Oper. Res.
, vol.241
, pp. 422-434
-
-
Chen, Z.Y.1
Fan, Z.P.2
Sun, M.H.3
-
44
-
-
0032981554
-
Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy and multivariate calibration
-
[44] Wentzell, P.D., Andrews, D.T., Walsh, J.M., Cooley, J.M., Spencer, P., Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy and multivariate calibration. Can. J. Chem. 77 (1999), 391–400.
-
(1999)
Can. J. Chem.
, vol.77
, pp. 391-400
-
-
Wentzell, P.D.1
Andrews, D.T.2
Walsh, J.M.3
Cooley, J.M.4
Spencer, P.5
-
45
-
-
0003119353
-
Spectrophotometry of human hemoglobin in the near infrared region from 1000–2500 nm
-
[45] Kuenstner, J.T., Norris, K.H., Spectrophotometry of human hemoglobin in the near infrared region from 1000–2500 nm. J. Infrared Spectrosc. 2 (1994), 59–65.
-
(1994)
J. Infrared Spectrosc.
, vol.2
, pp. 59-65
-
-
Kuenstner, J.T.1
Norris, K.H.2
|