메뉴 건너뛰기




Volumn 161, Issue , 2017, Pages 43-48

Subagging for the improvement of predictive stability of extreme learning machine for spectral quantitative analysis of complex samples

Author keywords

Complex samples; Ensemble modeling; Extreme learning machine; Multivariate calibration; Spectral analysis

Indexed keywords

FUEL OIL;

EID: 85008237793     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2016.10.019     Document Type: Article
Times cited : (25)

References (45)
  • 1
    • 84922574747 scopus 로고    scopus 로고
    • Multivariate calibration of first-order data with the correlation constrained MCR-ALS method
    • [1] Ahmadi, G., Tauler, R., Abdollahi, H., Multivariate calibration of first-order data with the correlation constrained MCR-ALS method. Chemom. Intell. Lab. Syst. 142 (2015), 143–150.
    • (2015) Chemom. Intell. Lab. Syst. , vol.142 , pp. 143-150
    • Ahmadi, G.1    Tauler, R.2    Abdollahi, H.3
  • 2
    • 34247350310 scopus 로고    scopus 로고
    • Near-infrared spectroscopy applications in pharmaceutical analysis
    • [2] Luypaert, J., Massart, D.L., Heyden, Y.V., Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72 (2007), 865–883.
    • (2007) Talanta , vol.72 , pp. 865-883
    • Luypaert, J.1    Massart, D.L.2    Heyden, Y.V.3
  • 3
    • 84962672555 scopus 로고    scopus 로고
    • Simultaneous spectrophotometric quantification of dinitrobenzene isomers in water samples using multivariate calibration methods
    • [3] Lu, T., Yuan, Y., Jiao, Y., Wen, Z.N., Wang, L., Zhao, Y.H., Zhang, Y.X., Li, M.L., Pu, X.M., Xu, T., Simultaneous spectrophotometric quantification of dinitrobenzene isomers in water samples using multivariate calibration methods. Chemom. Intell. Lab. Syst. 154 (2016), 72–79.
    • (2016) Chemom. Intell. Lab. Syst. , vol.154 , pp. 72-79
    • Lu, T.1    Yuan, Y.2    Jiao, Y.3    Wen, Z.N.4    Wang, L.5    Zhao, Y.H.6    Zhang, Y.X.7    Li, M.L.8    Pu, X.M.9    Xu, T.10
  • 4
    • 84996593791 scopus 로고    scopus 로고
    • Variable space boosting partial least squares for multivariate calibration of near infrared spectroscopy
    • [4] Bian, X.H., Li, S.J., Shao, X.G., Liu, P., Variable space boosting partial least squares for multivariate calibration of near infrared spectroscopy. Chemom. Intell. Lab. Syst., 2016, 10.1016/j.chemolab.2016.08.005.
    • (2016) Chemom. Intell. Lab. Syst.
    • Bian, X.H.1    Li, S.J.2    Shao, X.G.3    Liu, P.4
  • 5
    • 70349396621 scopus 로고    scopus 로고
    • Multivariate concentration determination using principal component regression with residual analysis
    • [5] Keithley, R.B., Heien, M.L., Wightman, R.M., Multivariate concentration determination using principal component regression with residual analysis. Trac-Trends Anal. Chem. 28 (2009), 1127–1136.
    • (2009) Trac-Trends Anal. Chem. , vol.28 , pp. 1127-1136
    • Keithley, R.B.1    Heien, M.L.2    Wightman, R.M.3
  • 6
    • 84949238988 scopus 로고    scopus 로고
    • The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework
    • [6] Lin, Y.W., Deng, B.C., Xu, Q.S., Yun, Y.H., Liang, Y.Z., The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework. Chemom. Intell. Lab. Syst. 150 (2016), 58–64.
    • (2016) Chemom. Intell. Lab. Syst. , vol.150 , pp. 58-64
    • Lin, Y.W.1    Deng, B.C.2    Xu, Q.S.3    Yun, Y.H.4    Liang, Y.Z.5
  • 8
    • 84978389793 scopus 로고    scopus 로고
    • Determination of protein secondary structure from infrared spectra using partial least-squares regression
    • [8] Wilcox, K.E., Blanch, E.W., Doig, A.J., Determination of protein secondary structure from infrared spectra using partial least-squares regression. Biochemistry 55 (2016), 3794–3802.
    • (2016) Biochemistry , vol.55 , pp. 3794-3802
    • Wilcox, K.E.1    Blanch, E.W.2    Doig, A.J.3
  • 9
    • 11044235779 scopus 로고    scopus 로고
    • Application of PLS and back-propagation neural networks for the estimation of soil properties
    • [9] Ramadan, Z., Hopke, P.K., Johnson, M.J., Scow, K.M., Application of PLS and back-propagation neural networks for the estimation of soil properties. Chemom. Intel. Lab. Syst. 75 (2005), 23–30.
    • (2005) Chemom. Intel. Lab. Syst. , vol.75 , pp. 23-30
    • Ramadan, Z.1    Hopke, P.K.2    Johnson, M.J.3    Scow, K.M.4
  • 10
    • 84929511086 scopus 로고    scopus 로고
    • Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network
    • [10] da Rocha, R.A., Paiva, I.M., Anjos, V., Furtado, M.A.M., Bell, M.J.V., Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network. J. Dairy Sci. 98 (2015), 3559–3567.
    • (2015) J. Dairy Sci. , vol.98 , pp. 3559-3567
    • da Rocha, R.A.1    Paiva, I.M.2    Anjos, V.3    Furtado, M.A.M.4    Bell, M.J.V.5
  • 11
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • [11] Thissen, U., Ustun, B., Melssen, W.J., Buydens, L.M.C., Multivariate calibration with least-squares support vector machines. Anal. Chem. 76 (2004), 3099–3105.
    • (2004) Anal. Chem. , vol.76 , pp. 3099-3105
    • Thissen, U.1    Ustun, B.2    Melssen, W.J.3    Buydens, L.M.C.4
  • 12
    • 84881609100 scopus 로고    scopus 로고
    • Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression
    • [12] Luo, R.M., Tan, S.M., Zhou, Y.P., Liu, S.J., Xu, H., Song, D.D., Cui, Y.F., Fu, H.Y., Yang, T.M., Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression. J. Chemom. 27 (2013), 198–206.
    • (2013) J. Chemom. , vol.27 , pp. 198-206
    • Luo, R.M.1    Tan, S.M.2    Zhou, Y.P.3    Liu, S.J.4    Xu, H.5    Song, D.D.6    Cui, Y.F.7    Fu, H.Y.8    Yang, T.M.9
  • 13
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [13] Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 84962783538 scopus 로고    scopus 로고
    • Forecasting daily streamflow using online sequential extreme learning machines
    • [16] Lima, A.R., Cannon, A.J., Hsieh, W.W., Forecasting daily streamflow using online sequential extreme learning machines. J. Hydrol. 537 (2016), 431–443.
    • (2016) J. Hydrol. , vol.537 , pp. 431-443
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 17
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • [17] Sun, Z.L., Choi, T.M., Au, K.F., Yu, Y., Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 46 (2008), 411–419.
    • (2008) Decis. Support Syst. , vol.46 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4
  • 19
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the extreme learning machine
    • [19] Wang, G.R., Zhao, Y., Wang, D., A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 72 (2008), 262–268.
    • (2008) Neurocomputing , vol.72 , pp. 262-268
    • Wang, G.R.1    Zhao, Y.2    Wang, D.3
  • 20
    • 84950341558 scopus 로고    scopus 로고
    • An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
    • [20] Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B., Wang, S.J., An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease. Neurocomputing 184 (2016), 131–144.
    • (2016) Neurocomputing , vol.184 , pp. 131-144
    • Chen, H.L.1    Wang, G.2    Ma, C.3    Cai, Z.N.4    Liu, W.B.5    Wang, S.J.6
  • 21
    • 84870784748 scopus 로고    scopus 로고
    • Combination of activation functions in extreme learning machines for multivariate calibration
    • [21] Peng, J.T., Li, L.Q., Tang, Y.Y., Combination of activation functions in extreme learning machines for multivariate calibration. Chemom. Intel. Lab. Syst. 120 (2013), 53–58.
    • (2013) Chemom. Intel. Lab. Syst. , vol.120 , pp. 53-58
    • Peng, J.T.1    Li, L.Q.2    Tang, Y.Y.3
  • 22
    • 84889686095 scopus 로고    scopus 로고
    • A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis
    • [22] AlHichri, H., Bazi, Y., Alajlan, N., Melgani, F., Malek, S., Yager, R.R., A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis. J. Chemom. 27 (2013), 447–456.
    • (2013) J. Chemom. , vol.27 , pp. 447-456
    • AlHichri, H.1    Bazi, Y.2    Alajlan, N.3    Melgani, F.4    Malek, S.5    Yager, R.R.6
  • 23
    • 84960425810 scopus 로고    scopus 로고
    • Calibration transfer via an extreme learning machine auto-encoder
    • [23] Chen, W.R., Bin, J., Lu, H.M., Zhang, Z.M., Liang, Y.Z., Calibration transfer via an extreme learning machine auto-encoder. Analyst 141 (2016), 1973–1980.
    • (2016) Analyst , vol.141 , pp. 1973-1980
    • Chen, W.R.1    Bin, J.2    Lu, H.M.3    Zhang, Z.M.4    Liang, Y.Z.5
  • 24
    • 84879534401 scopus 로고    scopus 로고
    • Qualitative and quantitative analysis in solid-state fermentation of protein feed by FT-NIR spectroscopy integrated with multivariate data analysis
    • [24] Jiang, H., Liu, G.H., Mei, C.L., Chen, Q.S., Qualitative and quantitative analysis in solid-state fermentation of protein feed by FT-NIR spectroscopy integrated with multivariate data analysis. Anal. Methods 5 (2013), 1872–1880.
    • (2013) Anal. Methods , vol.5 , pp. 1872-1880
    • Jiang, H.1    Liu, G.H.2    Mei, C.L.3    Chen, Q.S.4
  • 25
    • 84974710812 scopus 로고    scopus 로고
    • Spectral quantitative analysis of complex samples based on the extreme learning machine
    • [25] Bian, X.H., Li, S.J., Meng, M.R., Guo, Y.G., Chang, N., Wang, J.J., Spectral quantitative analysis of complex samples based on the extreme learning machine. Anal. Methods 8 (2016), 4674–46799.
    • (2016) Anal. Methods , vol.8 , pp. 4674-46799
    • Bian, X.H.1    Li, S.J.2    Meng, M.R.3    Guo, Y.G.4    Chang, N.5    Wang, J.J.6
  • 26
    • 84893651131 scopus 로고    scopus 로고
    • Dissimilarity based ensemble of extreme learning machine for gene expression data classification
    • [26] Lu, H.J., An, C.L., Zheng, E.H., Lu, Y., Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128 (2014), 22–30.
    • (2014) Neurocomputing , vol.128 , pp. 22-30
    • Lu, H.J.1    An, C.L.2    Zheng, E.H.3    Lu, Y.4
  • 27
    • 84886235407 scopus 로고    scopus 로고
    • A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra
    • [27] Li, Y.K., Jing, J., A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra. Chemom. Intell. Lab. Syst. 130 (2014), 45–49.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 45-49
    • Li, Y.K.1    Jing, J.2
  • 28
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • [28] Shao, X.G., Bian, X.H., Cai, W.S., An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 666 (2010), 32–37.
    • (2010) Anal. Chim. Acta , vol.666 , pp. 32-37
    • Shao, X.G.1    Bian, X.H.2    Cai, W.S.3
  • 29
    • 79955366049 scopus 로고    scopus 로고
    • A robust boosting regression tree with applications in quantitative structure-activity relationship studies of organic compounds
    • [29] Jiao, J., Tan, S.M., Luo, R.M., Zhou, Y.P., A robust boosting regression tree with applications in quantitative structure-activity relationship studies of organic compounds. J. Chem. Inf. Model. 51 (2011), 816–828.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 816-828
    • Jiao, J.1    Tan, S.M.2    Luo, R.M.3    Zhou, Y.P.4
  • 30
    • 84969277735 scopus 로고    scopus 로고
    • ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting
    • [30] Wang, N.N., Dong, J., Deng, Y.H., Zhu, M.F., Wen, M., Yao, Z.J., Lu, A.P., Wang, J.B., Cao, D.S., ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf. Model. 56 (2016), 763–773.
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 763-773
    • Wang, N.N.1    Dong, J.2    Deng, Y.H.3    Zhu, M.F.4    Wen, M.5    Yao, Z.J.6    Lu, A.P.7    Wang, J.B.8    Cao, D.S.9
  • 31
    • 84992311939 scopus 로고    scopus 로고
    • High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples
    • [31] Bian, X.H., Li, S.J., Lin, L.G., Tan, X.Y., Fan, Q.J., Li, M., High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples. Anal. Chim. Acta 925 (2016), 16–22.
    • (2016) Anal. Chim. Acta , vol.925 , pp. 16-22
    • Bian, X.H.1    Li, S.J.2    Lin, L.G.3    Tan, X.Y.4    Fan, Q.J.5    Li, M.6
  • 32
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • [32] Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 33
    • 33947320459 scopus 로고    scopus 로고
    • A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
    • [33] Li, Y.K., Shao, X.G., Cai, W.S., A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72 (2007), 217–222.
    • (2007) Talanta , vol.72 , pp. 217-222
    • Li, Y.K.1    Shao, X.G.2    Cai, W.S.3
  • 34
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • [34] Niu, D.P., Wang, F.L., Zhang, L.L., He, D.K., Jia, M.X., Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression. Chemom. Intell. Lab. Syst. 105 (2011), 125–130.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 125-130
    • Niu, D.P.1    Wang, F.L.2    Zhang, L.L.3    He, D.K.4    Jia, M.X.5
  • 35
    • 84871935564 scopus 로고    scopus 로고
    • A consensus modeling approach to update a spectroscopic calibration
    • [35] Shahbazikhah, P., Kalivas, J.H., A consensus modeling approach to update a spectroscopic calibration. Chemom. Intell. Lab. Syst. 120 (2013), 142–153.
    • (2013) Chemom. Intell. Lab. Syst. , vol.120 , pp. 142-153
    • Shahbazikhah, P.1    Kalivas, J.H.2
  • 36
    • 84887725182 scopus 로고    scopus 로고
    • Ensemble independent component regression models and soft sensing application
    • [36] Ge, Z.Q., Song, Z.H., Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 130 (2014), 115–122.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 115-122
    • Ge, Z.Q.1    Song, Z.H.2
  • 37
    • 84952926812 scopus 로고    scopus 로고
    • Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square
    • [37] He, Y.L., Geng, Z.Q., Zhu, Q.X., Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square. Chemom. Intell. Lab. Syst. 151 (2016), 78–88.
    • (2016) Chemom. Intell. Lab. Syst. , vol.151 , pp. 78-88
    • He, Y.L.1    Geng, Z.Q.2    Zhu, Q.X.3
  • 38
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • [38] Buhlmann, P., Yu, B., Analyzing bagging. Ann. Stat. 30 (2002), 927–961.
    • (2002) Ann. Stat. , vol.30 , pp. 927-961
    • Buhlmann, P.1    Yu, B.2
  • 39
    • 81155130606 scopus 로고    scopus 로고
    • Effect of the subsampling ratio in the application of subagging for multivariate calibration with the successive projections algorithm
    • [39] Galvao Filho, A.R., Galvao, R.K.H., Araujo, M.C.U., Effect of the subsampling ratio in the application of subagging for multivariate calibration with the successive projections algorithm. J. Braz. Chem. Soc. 22 (2011), 2225–2233.
    • (2011) J. Braz. Chem. Soc. , vol.22 , pp. 2225-2233
    • Galvao Filho, A.R.1    Galvao, R.K.H.2    Araujo, M.C.U.3
  • 41
    • 67650511905 scopus 로고    scopus 로고
    • Combined prediction model based on partial least squares regression and its application to near infrared spectroscopy quantitative analysis
    • [41] Cheng, Z., Zhu, A.S., Chen, D.Z., Combined prediction model based on partial least squares regression and its application to near infrared spectroscopy quantitative analysis. Chin. J. Anal. Chem. 35 (2007), 978–982.
    • (2007) Chin. J. Anal. Chem. , vol.35 , pp. 978-982
    • Cheng, Z.1    Zhu, A.S.2    Chen, D.Z.3
  • 42
    • 78650948925 scopus 로고    scopus 로고
    • Bagging for robust non-linear multivariate calibration of spectroscopy
    • [42] Wang, K., Chen, T., Lau, R., Bagging for robust non-linear multivariate calibration of spectroscopy. Chemom. Intell. Lab. Syst. 105 (2011), 1–6.
    • (2011) Chemom. Intell. Lab. Syst. , vol.105 , pp. 1-6
    • Wang, K.1    Chen, T.2    Lau, R.3
  • 43
    • 84911003647 scopus 로고    scopus 로고
    • Behavior-aware user response modeling in social media: learning from diverse heterogeneous data
    • [43] Chen, Z.Y., Fan, Z.P., Sun, M.H., Behavior-aware user response modeling in social media: learning from diverse heterogeneous data. Eur. J. Oper. Res. 241 (2015), 422–434.
    • (2015) Eur. J. Oper. Res. , vol.241 , pp. 422-434
    • Chen, Z.Y.1    Fan, Z.P.2    Sun, M.H.3
  • 44
    • 0032981554 scopus 로고    scopus 로고
    • Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy and multivariate calibration
    • [44] Wentzell, P.D., Andrews, D.T., Walsh, J.M., Cooley, J.M., Spencer, P., Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy and multivariate calibration. Can. J. Chem. 77 (1999), 391–400.
    • (1999) Can. J. Chem. , vol.77 , pp. 391-400
    • Wentzell, P.D.1    Andrews, D.T.2    Walsh, J.M.3    Cooley, J.M.4    Spencer, P.5
  • 45
    • 0003119353 scopus 로고
    • Spectrophotometry of human hemoglobin in the near infrared region from 1000–2500 nm
    • [45] Kuenstner, J.T., Norris, K.H., Spectrophotometry of human hemoglobin in the near infrared region from 1000–2500 nm. J. Infrared Spectrosc. 2 (1994), 59–65.
    • (1994) J. Infrared Spectrosc. , vol.2 , pp. 59-65
    • Kuenstner, J.T.1    Norris, K.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.