-
1
-
-
1642325338
-
-
P. N Juslin and J.A. Sloboda, Eds. New York: Oxford Univ. Press, ch. 10
-
A. Gabrielsson and E. Lindström, Music and Emotion, P. N Juslin and J.A. Sloboda, Eds. New York: Oxford Univ. Press, 2001, ch. 10, pp. 223–248.
-
(2001)
Music and Emotion
, pp. 223-248
-
-
Gabrielsson, A.1
Lindström, E.2
-
2
-
-
34547645414
-
The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music
-
J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music,” J. Acoust. Soc. Amer., vol. 122, pp. 881-891,2007.
-
(2007)
J. Acoust. Soc. Amer.
, vol.122
, pp. 881
-
-
Aucouturier, J.1
Defreville, B.2
Pachet, F.3
-
3
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff “An introduction to variable and feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
4
-
-
39649108781
-
A regression approach to music emotion recognition
-
Feb.
-
Y. H. Yang, Y. C. Lin, Y. F. Su, and H. H. Chen “A regression approach to music emotion recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 2, pp. 448–457, Feb. 2008.
-
(2008)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.16
, Issue.2
, pp. 448-457
-
-
Yang, Y.H.1
Lin, Y.C.2
Su, Y.F.3
Chen, H.H.4
-
5
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John “Wrappers for feature subset selection,” Artif. Intell., vol. 97, no. 1–2, pp. 273–324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
6
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
J. Reunanen “Overfitting in making comparisons between variable selection methods,” J. Mach. Learn. Res., vol. 3, pp. 1371–1382, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
9
-
-
33745816725
-
Less biased measurement of feature selection benefits
-
C. Saunders, M. Grobelnik, S. Gunn, and J. Shaw-Taylor, Eds. Berlin/Heidelberg, Germany: Springer
-
J. Reunanen, “Less biased measurement of feature selection benefits,” in Subspace, Latent Structure and Feature Selection, C. Saunders, M. Grobelnik, S. Gunn, and J. Shaw-Taylor, Eds. Berlin/Heidelberg, Germany: Springer, 2006, pp. 198–208.
-
(2006)
Subspace, Latent Structure and Feature Selection
, pp. 198-208
-
-
Reunanen, J.1
-
11
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection problem,” in Proc. Int. Conf. Mach. Learn., 1994, pp. 121–129.
-
(1994)
Proc. Int. Conf. Mach. Learn.
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
12
-
-
0004116989
-
-
2nd ed. Cambridge, MA: MIT Press
-
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.
-
(2001)
Introduction to Algorithms
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
Stein, C.4
-
13
-
-
84873433681
-
The 2007 MIREX audio mood classification task: Lessons learned
-
X. Hu, J. S. Downie, C. Laurier, M. Bay, and A. F. Ehmann, “The 2007 MIREX audio mood classification task: Lessons learned,” in Proc. 9th Int. Conf. Music Inf. Retrieval (ISMIR'08), 2008, pp. 462–467.
-
(2008)
Proc. 9th Int. Conf. Music Inf. Retrieval (ISMIR'08)
, pp. 462-467
-
-
Hu, X.1
Downie, J.S.2
Laurier, C.3
Bay, M.4
Ehmann, A.F.5
-
14
-
-
33745000971
-
Improving timbre similarity: How high is the sky?
-
J.-J. Aucouturier and F. Pachet, “Improving timbre similarity: How high is the sky?,” J. Negative Results Speech Audio Sci., vol. 1, no. 1, pp. 1–13, 2004.
-
(2004)
J. Negative Results Speech Audio Sci.
, vol.1
, Issue.1
, pp. 1-13
-
-
Aucouturier, J.-J.1
Pachet, F.2
-
16
-
-
26944434794
-
Extracting emotions from music data
-
M.-S. Hacid, N. Murray, Z. Ras, and S. Tsumoto, Eds. New York: Springer
-
A. Wieczorkowska, P. Synak, R. Lewis, and Z. W. Ras, “Extracting emotions from music data,” in Proc. ISMIS'05: Foundations of Intelligent Systems, M.-S. Hacid, N. Murray, Z. Ras, and S. Tsumoto, Eds. New York: Springer, 2005, pp. 456–465.
-
(2005)
Proc. ISMIS'05: Foundations of Intelligent Systems
, pp. 456-465
-
-
Wieczorkowska, A.1
Synak, P.2
Lewis, R.3
Ras, Z.W.4
-
17
-
-
33744975700
-
Automatic mood detection and tracking of music audio signals
-
Jan.
-
L. Lu, D. Liu, and H.-J. Zhang “Automatic mood detection and tracking of music audio signals,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 5–18, Jan. 2006.
-
(2006)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.14
, Issue.1
, pp. 5-18
-
-
Lu, L.1
Liu, D.2
Zhang, H.-J.3
-
18
-
-
62949088925
-
Feature selection in automatic music genre classification
-
Washington, DC
-
C. Silla Jr., A. Koerich, and C. Kaestner, “Feature selection in automatic music genre classification,” in Proc. 10th IEEE Int. Symp. Multimedia. (ISM'08), Washington, DC, 2008, pp. 39–44.
-
(2008)
Proc. 10th IEEE Int. Symp. Multimedia. (ISM'08)
, pp. 39-44
-
-
Silla, C.1
Koerich, A.2
Kaestner, C.3
-
19
-
-
67650401752
-
Using early-stopping to avoid overfitting in wrapper-based feature selection employing stochastic search
-
Trinity College, Dublin, U.K., Tech. Rep.
-
J. Loughrey and P. Cunningham, “Using early-stopping to avoid overfitting in wrapper-based feature selection employing stochastic search,” Dept. of Comput. Sci., Trinity College, Dublin, U.K., 2005, Tech. Rep.
-
(2005)
Dept. of Comput. Sci.
-
-
Loughrey, J.1
Cunningham, P.2
-
20
-
-
34547176679
-
Music emotion classification: A fuzzy approach
-
New York
-
Y.-H. Yang, C.-C. Liu, and H. H. Chen, “Music emotion classification: A fuzzy approach,” in Proc. 14th Annu. ACM Int. Conf. Multimedia (ACM MM'06), New York, 2006, pp. 81–84.
-
(2006)
Proc. 14th Annu. ACM Int. Conf. Multimedia (ACM MM'06)
, pp. 81-84
-
-
Yang, Y.-H.1
Liu, C.-C.2
Chen, H.H.3
-
21
-
-
34047195961
-
Audio music genre classification using different classifiers and feature selection methods
-
Y. Yaslan and Z. Cataltepe, “Audio music genre classification using different classifiers and feature selection methods,” in Proc. 18th Int. Conf. Pattern Recognition (ICPR'06), 2006, vol. 2.
-
(2006)
Proc. 18th Int. Conf. Pattern Recognition (ICPR'06)
, vol.2
-
-
Yaslan, Y.1
Cataltepe, Z.2
-
22
-
-
84873563446
-
Combining d2k and jgap for efficient feature weighting for classification tasks in music information retrieval
-
R. Fiebrink, C. McKay, and I. Fujinaga, “Combining d2k and jgap for efficient feature weighting for classification tasks in music information retrieval,” in Proc. Int. Conf. Music Inf. Retrieval (ISMIR'05), 2005, pp. 510–513.
-
(2005)
Proc. Int. Conf. Music Inf. Retrieval (ISMIR'05)
, pp. 510-513
-
-
Fiebrink, R.1
McKay, C.2
Fujinaga, I.3
-
23
-
-
78650825957
-
A comparison of the discrete and dimensional models of emotion in music
-
T. Eerola and J. Vuoskoski “A comparison of the discrete and dimensional models of emotion in music,” Psychol. Music, vol. 39, no. 1, pp. 18–49, 2011.
-
(2011)
Psychol. Music
, vol.39
, Issue.1
, pp. 18-49
-
-
Eerola, T.1
Vuoskoski, J.2
-
24
-
-
84873572465
-
MIR in Matlab (ii): A toolbox for musical feature extraction from audio
-
Vienna, Austria
-
O. Lartillot and P. Toiviainen, “MIR in Matlab (ii): A toolbox for musical feature extraction from audio,” in Proc. Int. Conf. Music Inf. Retrieval (ISMIR'07), Vienna, Austria, 2007, pp. 127–130.
-
(2007)
Proc. Int. Conf. Music Inf. Retrieval (ISMIR'07)
, pp. 127-130
-
-
Lartillot, O.1
Toiviainen, P.2
-
26
-
-
0036648502
-
Musical genre classification of audio signals
-
Jul.
-
G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302, Jul. 2002.
-
(2002)
IEEE Trans. Speech Audio Process.
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
27
-
-
80855135228
-
-
J. Gray, Ed., 2nd ed. San Francisco, CA: Morgan Kaufmann
-
I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools With Java Implementations, J. Gray, Ed., 2nd ed. San Francisco, CA: Morgan Kaufmann, 2005.
-
(2005)
Data Mining: Practical Machine Learning Tools With Java Implementations
-
-
Witten, I.H.1
Frank, E.2
-
28
-
-
0000468432
-
Estimating continuous distributions in Bayesian classifiers
-
San Mateo, CA
-
G. H. John and P. Langley, “Estimating continuous distributions in Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif. Intell., San Mateo, CA, 1995, pp. 338–345.
-
(1995)
Proc. 11th Conf. Uncertainty Artif. Intell.
, pp. 338-345
-
-
John, G.H.1
Langley, P.2
-
29
-
-
0032355984
-
Classification by pairwise coupling
-
T. Hastie and R. Tibshirani “Classification by pairwise coupling,” Ann. Statist., vol. 26, no. 2, pp. 451–471, 1998.
-
(1998)
Ann. Statist.
, vol.26
, Issue.2
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
30
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Scholkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, ch. 12
-
J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods: Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, ch. 12, pp. 185–208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
31
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse of dimensionality
-
J. H. Friedman, “On bias, variance, 0/1-loss, and the curse of dimensionality,” Data Mining Knowl. Disc., vol. 1, pp. 55–77, 1997.
-
(1997)
Data Mining Knowl. Disc.
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
34
-
-
15044339521
-
Impaired recognition of scary music following unilateral temporal lobe excision
-
N. Gosselin, I. Peretz, M. Noulhiane, D. Hasboun, C. Beckett, M. Baulac, and S. Samson “Impaired recognition of scary music following unilateral temporal lobe excision,” Brain, vol. 128, no. 3, pp. 628–640, 2005.
-
(2005)
Brain
, vol.128
, Issue.3
, pp. 628-640
-
-
Gosselin, N.1
Peretz, I.2
Noulhiane, M.3
Hasboun, D.4
Beckett, C.5
Baulac, M.6
Samson, S.7
-
35
-
-
42349097686
-
Is the neutral condition relevant to study musical emotion in patients?
-
D. Dellacherie, N. Ehrlé, and S. Samson “Is the neutral condition relevant to study musical emotion in patients?,” Music Percept., vol. 25, no. 4, pp. 285–294, 2008.
-
(2008)
Music Percept.
, vol.25
, Issue.4
, pp. 285-294
-
-
Dellacherie, D.1
Ehrlé, N.2
Samson, S.3
|