메뉴 건너뛰기




Volumn 17, Issue 6, 2009, Pages 1196-1207

Determining Mixing Parameters From Multispeaker Data Using Speech-Specific Information

Author keywords

Excitation source; mixing parameters; multispeaker data; speaker localization; time delay estimation

Indexed keywords


EID: 85008020244     PISSN: 15587916     EISSN: 15587924     Source Type: Journal    
DOI: 10.1109/TASL.2009.2016230     Document Type: Article
Times cited : (26)

References (29)
  • 1
    • 0015110651 scopus 로고
    • Signal processing for a cocktail party effect
    • O. M. M. Mitchell, C. A. Ross, and G. H. Yates “Signal processing for a cocktail party effect,” J. Acoust. Soc. Amer., vol. 50, no. 2, pp. 656–660, 1971.
    • (1971) J. Acoust. Soc. Amer. , vol.50 , Issue.2 , pp. 656-660
    • Mitchell, O.M.M.1    Ross, C.A.2    Yates, G.H.3
  • 2
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Oct.
    • J.-F. Cardoso “Blind signal separation: Statistical principles,” Proc. IEEE, vol. 86, no. 10, pp. 2009–2025, Oct. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 4
    • 11144238237 scopus 로고    scopus 로고
    • Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters
    • Jan.
    • S. C. Douglas, H. Sawada, and S. Makino, “Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters,” IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp. 92–104, Jan. 2005.
    • (2005) IEEE Trans. Speech Audio Process. , vol.13 , Issue.1 , pp. 92-104
    • Douglas, S.C.1    Sawada, H.2    Makino, S.3
  • 5
    • 0032212942 scopus 로고    scopus 로고
    • Blind separation of convolved mixtures in the frequency domain
    • Nov.
    • P. Smaragdis “Blind separation of convolved mixtures in the frequency domain,” NeuroComputing, vol. 22, no. 1–3, pp. 21–34, Nov. 1998.
    • (1998) NeuroComputing , vol.22 , Issue.1-3 , pp. 21-34
    • Smaragdis, P.1
  • 6
    • 25144522151 scopus 로고    scopus 로고
    • Frequency-domain blind source separation
    • J. Benesty, S. Makino, and J. Chen, Eds. Berlin, Germany: Springer
    • H. Sawada, R. Mukai, S. Araki, and S. Makino, “Frequency-domain blind source separation,” in Speech Enhancement, J. Benesty, S. Makino, and J. Chen, Eds. Berlin, Germany: Springer, 2005, pp. 299–327.
    • (2005) Speech Enhancement , pp. 299-327
    • Sawada, H.1    Mukai, R.2    Araki, S.3    Makino, S.4
  • 8
    • 4344579404 scopus 로고    scopus 로고
    • A robust precise method for solving the permutation problem of frequency-domain blind source separation
    • Sep.
    • H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust precise method for solving the permutation problem of frequency-domain blind source separation,” IEEE Trans. Speech Audio Process., vol. 12, no. 5, pp. 530–538, Sep. 2004.
    • (2004) IEEE Trans. Speech Audio Process. , vol.12 , Issue.5 , pp. 530-538
    • Sawada, H.1    Mukai, R.2    Araki, S.3    Makino, S.4
  • 9
    • 3142694930 scopus 로고    scopus 로고
    • Blind separation of speech mixtures via time-frequency masking
    • Jul.
    • O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-frequency masking,” IEEE Trans. Signal Process., vol. 52, no. 7, pp. 1830–1847, Jul. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.7 , pp. 1830-1847
    • Yilmaz, O.1    Rickard, S.2
  • 10
    • 34247223586 scopus 로고    scopus 로고
    • Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors
    • S. Araki, H. Sawada, R. Mukai, and S. Makino, “Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors,” Signal Process., vol. 87, no. 8, pp. 1833–1847, 2007.
    • (2007) Signal Process. , vol.87 , Issue.8 , pp. 1833-1847
    • Araki, S.1    Sawada, H.2    Mukai, R.3    Makino, S.4
  • 12
    • 50249118229 scopus 로고    scopus 로고
    • A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures
    • New Paltz, NY, Oct.
    • H. Sawada, S. Araki, and S. Makino, “A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures,” in Proc. IEEE Workshop Applicat. Signal Process. Audio Acoust., New Paltz, NY, Oct. 2007, pp. 139–142.
    • (2007) Proc. IEEE Workshop Applicat. Signal Process. Audio Acoust. , pp. 139-142
    • Sawada, H.1    Araki, S.2    Makino, S.3
  • 13
    • 28244502292 scopus 로고    scopus 로고
    • An analysis of the limitations of blind signal separation application with speech
    • Feb.
    • D. Smith, J. Lukasiak, and I. S. Burnett, “An analysis of the limitations of blind signal separation application with speech,” Signal Process., vol. 86, no. 2, pp. 353–359, Feb. 2006.
    • (2006) Signal Process. , vol.86 , Issue.2 , pp. 353-359
    • Smith, D.1    Lukasiak, J.2    Burnett, I.S.3
  • 14
    • 30444432202 scopus 로고    scopus 로고
    • A unified method for blind separation of sparse sources with unknown source number
    • Jan.
    • Q. Lv and X.-D. Zhang, “A unified method for blind separation of sparse sources with unknown source number,” IEEE Signal Process. Lett., vol. 13, no. 1, pp. 49–51, Jan. 2006.
    • (2006) IEEE Signal Process. Lett. , vol.13 , Issue.1 , pp. 49-51
    • Lv, Q.1    Zhang, X.-D.2
  • 15
    • 0000914334 scopus 로고    scopus 로고
    • Convolutive blind separation of non-stationary sources
    • May
    • L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320–327, May 2000.
    • (2000) IEEE Trans. Speech Audio Process. , vol.8 , Issue.3 , pp. 320-327
    • Parra, L.1    Spence, C.2
  • 16
    • 0032624821 scopus 로고    scopus 로고
    • Blind source separation of more sources than mixtures using overcomplete representations
    • Apr.
    • T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski “Blind source separation of more sources than mixtures using overcomplete representations,” IEEE Signal Process. Lett., vol. 6, no. 4, pp. 87–91, Apr. 1999.
    • (1999) IEEE Signal Process. Lett. , vol.6 , Issue.4 , pp. 87-91
    • Lee, T.W.1    Lewicki, M.S.2    Girolami, M.3    Sejnowski, T.J.4
  • 17
    • 31344466301 scopus 로고    scopus 로고
    • Underdetermined blind source separation based on sparse representation
    • Feb.
    • Y. Li, S. Amari, A. Cichocki, D. W. C. Ho, and S. Xie, “Underdetermined blind source separation based on sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 423–437, Feb. 2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.2 , pp. 423-437
    • Li, Y.1    Amari, S.2    Cichocki, A.3    Ho, D.W.C.4    Xie, S.5
  • 19
    • 0016990291 scopus 로고
    • The generalized correlation method for estimation of timedelay
    • Aug.
    • C. H. Knapp and G. C. Carter “The generalized correlation method for estimation of timedelay,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-24, no. 4, pp. 320–327, Aug. 1976.
    • (1976) IEEE Trans. Acoust., Speech, Signal Process. , vol.ASSP-24 , Issue.4 , pp. 320-327
    • Knapp, C.H.1    Carter, G.C.2
  • 20
    • 34347384187 scopus 로고    scopus 로고
    • Determining number of speakers from multispeaker speech signals using excitation source information
    • Jul.
    • R. K. Swamy, K. S. R. Murty, and B. Yegnanarayana, “Determining number of speakers from multispeaker speech signals using excitation source information,” IEEE Signal Process. Lett., vol. 14, no. 7, pp. 481–484, Jul. 2007.
    • (2007) IEEE Signal Process. Lett. , vol.14 , Issue.7 , pp. 481-484
    • Swamy, R.K.1    Murty, K.S.R.2    Yegnanarayana, B.3
  • 21
    • 0016495091 scopus 로고
    • Linear prediction: A tutorial review
    • Apr.
    • J. Makhoul “Linear prediction: A tutorial review,” Proc. IEEE, vol. 63, no. 4, pp. 561–580, Apr. 1975.
    • (1975) Proc. IEEE , vol.63 , Issue.4 , pp. 561-580
    • Makhoul, J.1
  • 22
    • 0018656516 scopus 로고
    • Epoch extraction from linear prediction residual for identification of closed glottis interval
    • Aug.
    • T. V. Ananthapadmanabha and B. Yegnanarayana “Epoch extraction from linear prediction residual for identification of closed glottis interval,” IEEE Trans. Acoust., Speech, Signal Process., vol. 27, no. 4, pp. 309–319, Aug. 1979.
    • (1979) IEEE Trans. Acoust., Speech, Signal Process. , vol.27 , Issue.4 , pp. 309-319
    • Ananthapadmanabha, T.V.1    Yegnanarayana, B.2
  • 26
    • 85132940694 scopus 로고    scopus 로고
    • The duet blind source separation algorithm
    • S. Makino, T. W. Lee, and H. Sawada, Eds. Dordrecht, The Netherlands: Springer, ch. 8
    • S. Rickard, “The duet blind source separation algorithm,” in Blind Speech Separation, S. Makino, T. W. Lee, and H. Sawada, Eds. Dordrecht, The Netherlands: Springer, 2007, ch. 8, pp. 217–241.
    • (2007) Blind Speech Separation , pp. 217-241
    • Rickard, S.1
  • 27
    • 33744975847 scopus 로고    scopus 로고
    • Performance measurement in blind audio source separation
    • Jul.
    • E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio source separation,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.
    • (2006) IEEE Trans. Audio, Speech, Lang. Process. , vol.14 , Issue.4 , pp. 1462-1469
    • Vincent, E.1    Gribonval, R.2    Fevotte, C.3
  • 29
    • 0012982822 scopus 로고    scopus 로고
    • Evaluation of blind signal separation methods
    • Aussois, France, Jan.
    • D. Schobben, K. Torkkola, and P. Smaragdis, “Evaluation of blind signal separation methods,” in Proc. ICA BSS, Aussois, France, Jan. 1999.
    • (1999) Proc. ICA BSS
    • Schobben, D.1    Torkkola, K.2    Smaragdis, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.