메뉴 건너뛰기




Volumn 50, Issue 2, 2003, Pages 241-250

Sensor Monitoring Using a Fuzzy Neural Network With an Automatic Structure Constructor

Author keywords

Fuzzy neural network; genetic algorithm (GA); input selection; rule generation; sensor failure detection; sequential probability ratio test

Indexed keywords


EID: 85008014939     PISSN: 00189499     EISSN: 15581578     Source Type: Journal    
DOI: 10.1109/TNS.2003.809471     Document Type: Article
Times cited : (17)

References (18)
  • 2
    • 0031208072 scopus 로고    scopus 로고
    • A personal computer-based on-line signal validation system for nuclear power plants
    • July.
    • A. Erbay and B. R. Upadhyaya, “A personal computer-based on-line signal validation system for nuclear power plants,” Nucl. Technol., vol. 119, no. 1, pp. 63-75, July 1997.
    • (1997) Nucl. Technol. , vol.119 , Issue.1 , pp. 63-75
    • Erbay, A.1    Upadhyaya, B.R.2
  • 4
    • 0031198473 scopus 로고    scopus 로고
    • Signal validation using an adaptive neural fuzzy inference system
    • J. W. Hines, D. J. Wrest, and R. E. Uhrig, “Signal validation using an adaptive neural fuzzy inference system,” Nucl. Technol., vol. 119, no. 2, pp. 181-193, 1997.
    • (1997) Nucl. Technol. , vol.119 , Issue.2 , pp. 181-193
    • Hines, J.W.1    Wrest, D.J.2    Uhrig, R.E.3
  • 6
    • 4644303673 scopus 로고    scopus 로고
    • A neuro-fuzzy model applied full range signal validation of PWR nuclear power plant data
    • Antwerpen, Belgium.
    • P. Fantoni, S. Figedy, and A. Racz, “A neuro-fuzzy model applied full range signal validation of PWR nuclear power plant data,” in FLINS-98, Antwerpen, Belgium, 1998.
    • (1998) in FLINS-98
    • Fantoni, P.1    Figedy, S.2    Racz, A.3
  • 7
    • 0033216692 scopus 로고    scopus 로고
    • Combining conceptual clustering and principal component analysis for state space based process montoring
    • X. Z.Wang and R. F. Li, “Combining conceptual clustering and principal component analysis for state space based process montoring,” Indust. Eng. Chem. Res., vol. 38, no. 11, pp. 4345-4358, 1999.
    • (1999) Indust. Eng. Chem. Res. , vol.38 , Issue.11 , pp. 4345-4358
    • Wang, X.Z.1    Li, R.F.2
  • 8
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • J. Chen and J. Liu, “Mixture principal component analysis models for process monitoring,” Indust. Eng. Chem. Res., vol. 38, no. 4, pp. 1478-1488, 1999.
    • (1999) Indust. Eng. Chem. Res. , vol.38 , Issue.4 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 9
    • 0344141207 scopus 로고    scopus 로고
    • Selection of variables for interpreting multivariate gas sensor data
    • T. Eklov, P. Martensson, and I. Lundstorm, “Selection of variables for interpreting multivariate gas sensor data,” Analytica Chimica Acta, vol. 381, pp. 221-232, 1999.
    • (1999) Analytica Chimica Acta , vol.381 , pp. 221-232
    • Eklov, T.1    Martensson, P.2    Lundstorm, I.3
  • 10
    • 0032690733 scopus 로고    scopus 로고
    • A genetic algorithm for pattern recognition analysis of pyrolysis gas chromatographic data
    • B. K. Lavine, A. Moores, and L. K. Helfend, “A genetic algorithm for pattern recognition analysis of pyrolysis gas chromatographic data,” J. Anal. Appl. Pyrolysis, vol. 50, pp. 47-62, 1999.
    • (1999) J. Anal. Appl. Pyrolysis , vol.50 , pp. 47-62
    • Lavine, B.K.1    Moores, A.2    Helfend, L.K.3
  • 11
    • 0342546478 scopus 로고    scopus 로고
    • Feature screening using signal-to-noise ratios
    • K.W. Bauer Jr., S. G. Alsing, and K. A. Greene, “Feature screening using signal-to-noise ratios,” Neurocomputing, vol. 31, pp. 29-44, 2000.
    • (2000) Neurocomputing , vol.31 , pp. 29-44
    • Bauer, K.W.1    Alsing, S.G.2    Greene, K.A.3
  • 12
    • 0034284315 scopus 로고    scopus 로고
    • Input selection based on an ensemble
    • P. van de Laar and T. Heskes, “Input selection based on an ensemble,” Neurocomputing, vol. 34, pp. 227-238, 2000.
    • (2000) Neurocomputing , vol.34 , pp. 227-238
    • van de Laar, P.1    Heskes, T.2
  • 13
    • 0000903874 scopus 로고    scopus 로고
    • Soft computing for feature analysis
    • N. R. Pal, “Soft computing for feature analysis,” Fuzzy Sets Syst., vol. 103, pp. 201-221, 1999.
    • (1999) Fuzzy Sets Syst. , vol.103 , pp. 201-221
    • Pal, N.R.1
  • 15
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Man, Cybern.
    • J.-S. Roger Jang, “ANFIS: adaptive-network-based fuzzy inference systems,” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-685, May 1993.
    • (1993) IEEE Trans. Syst. , vol.23 , pp. 665-685
    • Roger Jang, J.-S.1
  • 16
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan./Feb.
    • T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. System, Man, Cybern., vol. SMC-1, pp. 116-132, Jan./Feb. 1985.
    • (1985) IEEE Trans. System, Man, Cybern. , vol.SMC-1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.