-
1
-
-
33847734326
-
High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): Fabrication on bulk si wafer, characteristics, and reliability
-
S. D. Suk, S.-Y. Lee, S.-M. Kim, E.-J. Yoon, M.-S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D.-S. Shin, K.-H. Lee, H. S. Park, J. N. Han, C. J. Park, J.-B. Park, D.-W. Kim, D. Park, and B.-I. Ryu, “High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): Fabrication on bulk si wafer, characteristics, and reliability,” in IEDM Tech. Dig., 2005, pp. 717–720.
-
(2005)
IEDM Tech. Dig.
, pp. 717-720
-
-
Suk, S.D.1
Lee, S.-Y.2
Kim, S.-M.3
Yoon, E.-J.4
Kim, M.-S.5
Li, M.6
Oh, C.W.7
Yeo, K.H.8
Kim, S.H.9
Shin, D.-S.10
Lee, K.-H.11
Park, H.S.12
Han, J.N.13
Park, C.J.14
Park, J.-B.15
Kim, D.-W.16
Park, D.17
Ryu, B.-I.18
-
2
-
-
84957893116
-
Design considerations and comparative investigations of ultra-thin SOI, double-gate and cylindrical nanowire FETS
-
E. Gnani, S. Reggiani, M. Rudan, and G. Baccarani, “Design considerations and comparative investigations of ultra-thin SOI, double-gate and cylindrical nanowire FETS,” in Proc. ESSDERC, 2006, pp. 371–374.
-
(2006)
Proc. ESSDERC
, pp. 371-374
-
-
Gnani, E.1
Reggiani, S.2
Rudan, M.3
Baccarani, G.4
-
3
-
-
0038161696
-
High performance silicon nanowire field effect transistors
-
Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, no. 2, pp. 149–152, 2003.
-
(2003)
Nano Lett.
, vol.3
, Issue.2
, pp. 149-152
-
-
Cui, Y.1
Zhong, Z.2
Wang, D.3
Wang, W.U.4
Lieber, C.M.5
-
4
-
-
33646271349
-
High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices
-
May
-
N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, “High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–386, May 2006.
-
(2006)
IEEE Electron Device Lett.
, vol.27
, Issue.5
, pp. 383-386
-
-
Singh, N.1
Agarwal, A.2
Bera, L.K.3
Liow, T.Y.4
Yang, R.5
Rustagi, S.C.6
Tung, C.H.7
Kumar, R.8
Lo, G.Q.9
Balasubramanian, N.10
Kwong, D.-L.11
-
5
-
-
0035717948
-
Sub-20 nm CMOS FinFET technologies
-
Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Sub-20 nm CMOS FinFET technologies,” in IEDM Tech. Dig., 2001, pp. 421–424.
-
(2001)
IEDM Tech. Dig.
, pp. 421-424
-
-
Choi, Y.-K.1
Lindert, N.2
Xuan, P.3
Tang, S.4
Ha, D.5
Anderson, E.6
King, T.-J.7
Bokor, J.8
Hu, C.9
-
6
-
-
0033798557
-
Germanium nanowire growth via simple vapor transport
-
Y. Wu and P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater, vol. 12, no. 3, pp. 605–607, 2000.
-
(2000)
Chem. Mater
, vol.12
, Issue.3
, pp. 605-607
-
-
Wu, Y.1
Yang, P.2
-
7
-
-
0033887818
-
General synthesis of compound semiconductor nanowires
-
Feb.
-
X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater., vol. 12, no. 4, pp. 298–302, Feb. 2000.
-
(2000)
Adv. Mater.
, vol.12
, Issue.4
, pp. 298-302
-
-
Duan, X.1
Lieber, C.M.2
-
8
-
-
12844283995
-
Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires
-
Dec.
-
Y. Huang and C. M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires,” Pure Appl. Chem., vol. 76, no. 12, pp. 2051–2068, Dec. 2004.
-
(2004)
Pure Appl. Chem.
, vol.76
, Issue.12
, pp. 2051-2068
-
-
Huang, Y.1
Lieber, C.M.2
-
9
-
-
4344682131
-
Semiconductor nanowires and nanotubes
-
Aug.
-
M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res., vol. 34, pp. 83–122, Aug. 2004.
-
(2004)
Annu. Rev. Mater. Res.
, vol.34
, pp. 83-122
-
-
Law, M.1
Goldberger, J.2
Yang, P.3
-
10
-
-
3042675602
-
Assembly of nanostructure using AFM based nanomanipulation system
-
G. Li, N. Xi, H. Chen, A. Saeed, and M. Yu, “Assembly of nanostructure using AFM based nanomanipulation system,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, vol. 1, pp. 428–433.
-
(2004)
Proc. IEEE Int. Conf. Robot. Autom.
, vol.1
, pp. 428-433
-
-
Li, G.1
Xi, N.2
Chen, H.3
Saeed, A.4
Yu, M.5
-
11
-
-
33745170382
-
Sub-25 nm single-metal gate CMOS multi-bridge-channel MOSFET (MBCFET) for high performance and low power application
-
S.-Y. Lee, E.-J. Yoon, D.-S. Shin, S.-M. Kim, S.-D. Suk, M.-S. Kim, D. -W. Kim, D. Park, K. Kim, and B.-I. Ryu, “Sub-25 nm single-metal gate CMOS multi-bridge-channel MOSFET (MBCFET) for high performance and low power application,” in VLSI Symp. Tech. Dig., 2005, pp. 154–155.
-
(2005)
VLSI Symp. Tech. Dig.
, pp. 154-155
-
-
Lee, S.-Y.1
Yoon, E.-J.2
Shin, D.-S.3
Kim, S.-M.4
Suk, S.-D.5
Kim, M.-S.6
Kim, D.-W.7
Park, D.8
Kim, K.9
Ryu, B.-I.10
-
12
-
-
4544316746
-
A novel sub-50 nm multi-bridge-channel MOSFET (< BCFET) with extremely high performance
-
S.-Y. Lee, E.-J. Yoon, S.-M. Kim, C. W. Oh, M. Li, J.-D. Choi, K. -H. Yeo, M.-S. Kim, H.-J. Cho, S.-H. Kim, D.-W. Kim, D. Park, and K. Kim, “A novel sub-50 nm multi-bridge-channel MOSFET (< BCFET) with extremely high performance,” in VLSI Symp. Tech. Dig., 2004, pp. 200–201.
-
(2004)
VLSI Symp. Tech. Dig.
, pp. 200-201
-
-
Lee, S.-Y.1
Yoon, E.-J.2
Kim, S.-M.3
Oh, C.W.4
Li, M.5
Choi, J.-D.6
Yeo, K.-H.7
Kim, M.-S.8
Cho, H.-J.9
Kim, S.-H.10
Kim, D.-W.11
Park, D.12
Kim, K.13
-
13
-
-
21644436369
-
Sub 30 nm multi-bridge-channel MOSFET (MBCFET) with metal gate electrode for ultra high performance application
-
E.-J. Yoon, S.-Y. Lee, S.-M. Kim, M.-S. Kim, S. H. Kim, L. Ming, S. Suk, K. Yeo, C. W. Oh, J.-D. Choe, D. Choi, D.-W. Kim, D. Park, K. Kim, and B.-I. Ryu, “Sub 30 nm multi-bridge-channel MOSFET (MBCFET) with metal gate electrode for ultra high performance application,” in IEDM Tech. Dig., 2004, pp. 627–630.
-
(2004)
IEDM Tech. Dig.
, pp. 627-630
-
-
Yoon, E.-J.1
Lee, S.-Y.2
Kim, S.-M.3
Kim, M.-S.4
Kim, S.H.5
Ming, L.6
Suk, S.7
Yeo, K.8
Oh, C.W.9
Choe, J.-D.10
Choi, D.11
Kim, D.-W.12
Park, D.13
Kim, K.14
Ryu, B.-I.15
-
14
-
-
0037480048
-
Oxidation of silicon-germanium alloys: I. An experimental study
-
P.-E. Hellberg, S.-L. Zhang, F. M. D’Herule, and C. S. Petersson, “Oxidation of silicon-germanium alloys: I. An experimental study,” Appl. Phys. Lett., vol. 82, no. 11, pp. 5773–5778, 1997.
-
(1997)
Appl. Phys. Lett.
, vol.82
, Issue.11
, pp. 5773-5778
-
-
Hellberg, P.-E.1
Zhang, S.-L.2
D’Herule, F.M.3
Petersson, C.S.4
-
15
-
-
15044363452
-
[110]-surface strained-SOI CMOS devices
-
Mar.
-
T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, and S. Takagi, “[110]-surface strained-SOI CMOS devices,” IEEE Trans. Electron Devices, vol. 52, no. 3, pp. 367–374, Mar. 2005.
-
(2005)
IEEE Trans. Electron Devices
, vol.52
, Issue.3
, pp. 367-374
-
-
Mizuno, T.1
Sugiyama, N.2
Tezuka, T.3
Moriyama, Y.4
Nakaharai, S.5
Takagi, S.6
-
16
-
-
15844407150
-
Benchmarking nanotechnology for high-performance and low-power logic transistor applications
-
Mar.
-
R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Trans. Nanotechnol., vol. 4, no. 2, pp. 153–158, Mar. 2005.
-
(2005)
IEEE Trans. Nanotechnol.
, vol.4
, Issue.2
, pp. 153-158
-
-
Chau, R.1
Datta, S.2
Doczy, M.3
Doyle, B.4
Jin, B.5
Kavalieros, J.6
Majumdar, A.7
Metz, M.8
Radosavljevic, M.9
-
17
-
-
85008053022
-
-
[Online]. Available:
-
[Online]. Available: http://download.intel.com/education/highered/curriculum/packaging/Lect04.ppt, pp. 39–42.
-
-
-
|