-
1
-
-
0004164635
-
Protein Engineering
-
Oxender, D. L., Fox, C. F., Eds.; Alan R. Liss, Inc.: New York
-
Protein Engineering; Oxender, D. L., Fox, C. F., Eds.; Alan R. Liss, Inc.: New York, 1987.
-
(1987)
-
-
-
3
-
-
0024665396
-
-
Mutter, M.; Vuilleumier, S. Angew. Chem., Int. Ed. Engl. 1989, 28, 535.
-
(1989)
Angew. Chem., Int. Ed. Engl.
, vol.28
, pp. 535
-
-
Mutter, M.1
Vuilleumier, S.2
-
4
-
-
5844312791
-
-
Unson, C. B.; Erickson, B. W.; Richardson, D. C.; Richardson, J. S. Fed. Proc. 1984, 43, 1837.
-
(1984)
Fed. Proc.
, vol.43
, pp. 1837
-
-
Unson, C.B.1
Erickson, B.W.2
Richardson, D.C.3
Richardson, J.S.4
-
5
-
-
0040988161
-
-
Mutter, M.; Altmann, K.-H.; Vorherr, T. Z. Naturforsch. 1986, 41b, 1315.
-
(1986)
Z. Naturforsch.
, vol.41b
, pp. 1315
-
-
Mutter, M.1
Altmann, K.-H.2
Vorherr, T.3
-
6
-
-
0018715371
-
-
Gutte, B.; Daumingen, M.; Wittschieber, E. Nature 1979, 281, 650.
-
(1979)
Nature
, vol.281
, pp. 650
-
-
Gutte, B.1
Daumingen, M.2
Wittschieber, E.3
-
9
-
-
84986364653
-
-
Mutter, M.; Altmann, E.; Altmann, K.-H.G.; Vuilleumier, S.; Grcmlich, H.-U.; Müller, K. Helv. Chim. Acta 1988, 71, 835.
-
(1988)
Helv. Chim. Acta
, vol.71
, pp. 835
-
-
Mutter, M.1
Altmann, E.2
Altmann, K.-H.G.3
Vuilleumier, S.4
Grcmlich, H.-U.5
Müller, K.6
-
11
-
-
0025007175
-
-
Montai, M.; Montai, M. S.; Tomich, J. M. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6929.
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 6929
-
-
Montai, M.1
Montai, M.S.2
Tomich, J.M.3
-
12
-
-
0025335121
-
-
Hahn, K.; Klis, W. A.; Stewart, J. M. Science 1990, 248, 1544.
-
(1990)
Science
, vol.248
, pp. 1544
-
-
Hahn, K.1
Klis, W.A.2
Stewart, J.M.3
-
14
-
-
0024290112
-
-
Parraga, G.; Horvath, S. J.; Eisen, A.; Taylor, W. E.; Hood, L.; Young, E. T.; Klevit, R. E. Science 1988, 241, 1489.
-
(1988)
Science
, vol.241
, pp. 1489
-
-
Parraga, G.1
Horvath, S.J.2
Eisen, A.3
Taylor, W.E.4
Hood, L.5
Young, E.T.6
Klevit, R.E.7
-
17
-
-
0025675385
-
-
Ruan, F.-Q.; Chen, Y.-Q.; Hopkins, P. B. J. Am. Chem. Soc. 1990, 112, 9403.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 9403
-
-
Ruan, F.-Q.1
Chen, Y.-Q.2
Hopkins, P.B.3
-
19
-
-
85023335764
-
-
N-Hydroxybenzotriazole (HOBt) (0.50 mmol) and diisopropylcarbodiimide (0.50 mmol) were added to form the HOBt diester; after 45 min of stirring, the solution cleared and turned faint yellow. MBHA resin-(aa)15-BOC (0.10 mmol) was deprotected with trifluoroacetic acid (TFA) and washed with CH2Cl2. The HOBt diester solution was added, and the mixture was shaken for 8 h. The resin was washed with CH2Cl2 and 33% EtOH/CH2Cl2. A negative Kaiser ninhydrin test6d for free NH2 indicated that coupling was complete. Cleavage from the resin according to a published procedure6e using trimethylsilyl triflate in TFA as a deprotecting reagent in the presence of thioanisole and m-cresol at 0 °C for 2 h yielded crude peptide 2, which was purified7 (yield 19%) by gel permeation chromatography on a 1.2 cm × 20 cm Sephadex G-15 column, eluting with 2% NH4HCO3, followed by preparative reverse-phase HPLC (Vydak C4 prep column, 20%–80% CH3CN in water with 0.1% TFA over 20 min; 2 elutes at 54% CH3CN). As a control compound, we also synthesized the benzamide-modified peptide 4 (Figure 1 ), using the same synthetic methodology.7
-
Peptide 1 (Figure 1) was synthesized6b in a protected form on p-methylbenzhydrylamine (MBHA) resin. This peptide was designed to form an amphiphilic α-helix,2a and Sasaki and Kaiser2b showed that it forms a four-α-helix bundle when attached to a porphyrin template. While peptide 1 was bound to the resin, its N-terminus was covalently coupled with 2,2′-bipyridine-4,4′-dicarboxylic acid. 2,2′-Bipyridine-4,4′-dicarboxyiic acid was prepared in 37% yield from 4,4′-dimethyl-2,2′-bipyridine (Aldrich) by oxidation with KMnO4.6c The diacid (0.20 mmol) was dissolved in 3 mL of 5% diisopropylethylamine (DIEA) in CH2Cl2 in a flask equipped with a stir bar and drying tube. N-Hydroxybenzotriazole (HOBt) (0.50 mmol) and diisopropylcarbodiimide (0.50 mmol) were added to form the HOBt diester; after 45 min of stirring, the solution cleared and turned faint yellow. MBHA resin-(aa)15-BOC (0.10 mmol) was deprotected with trifluoroacetic acid (TFA) and washed with CH2Cl2. The HOBt diester solution was added, and the mixture was shaken for 8 h. The resin was washed with CH2Cl2 and 33% EtOH/CH2Cl2. A negative Kaiser ninhydrin test6d for free NH2 indicated that coupling was complete. Cleavage from the resin according to a published procedure6e using trimethylsilyl triflate in TFA as a deprotecting reagent in the presence of thioanisole and m-cresol at 0 °C for 2 h yielded crude peptide 2, which was purified7 (yield 19%) by gel permeation chromatography on a 1.2 cm × 20 cm Sephadex G-15 column, eluting with 2% NH4HCO3, followed by preparative reverse-phase HPLC (Vydak C4 prep column, 20%–80% CH3CN in water with 0.1% TFA over 20 min; 2 elutes at 54% CH3CN). As a control compound, we also synthesized the benzamide-modified peptide 4 (Figure 1 ), using the same synthetic methodology.7
-
Peptide 1 (Figure 1) was synthesized6b in a protected form on p-methylbenzhydrylamine (MBHA) resin. This peptide was designed to form an amphiphilic α-helix,2a and Sasaki and Kaiser2b showed that it forms a four-α-helix bundle when attached to a porphyrin template. While peptide 1 was bound to the resin, its N-terminus was covalently coupled with 2,2′-bipyridine-4,4′-dicarboxylic acid. 2,2′-Bipyridine-4,4′-dicarboxyiic acid was prepared in 37% yield from 4,4′-dimethyl-2,2′-bipyridine (Aldrich) by oxidation with KMnO4.6c The diacid (0.20 mmol) was dissolved in 3 mL of 5% diisopropylethylamine (DIEA) in CH2Cl2 in a flask equipped with a stir bar and drying tube.
-
-
-
20
-
-
0003860475
-
Solid Phase Peptide Synthesis
-
Pierce Chemical Company: Rockford, IL
-
Stewart, J. M.; Young, J. D. Solid Phase Peptide Synthesis, Pierce Chemical Company: Rockford, IL 1984.
-
(1984)
-
-
Stewart, J.M.1
Young, J.D.2
-
22
-
-
0014772602
-
-
Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34, 595.
-
(1970)
Anal. Biochem.
, vol.34
, pp. 595
-
-
Kaiser, E.1
Colescott, R.L.2
Bossinger, C.D.3
Cook, P.I.4
-
23
-
-
0001957488
-
-
Fuji, N.; Otaka, A.; Ikemura, O.; Akagi, K.; Funakoshi, S.; Hayashi, Y.; Kuroda, Y.; Yajima, H. J. Chem. Soc., Chem. Commun. 1987, 274.
-
(1987)
J. Chem. Soc., Chem. Commun.
, pp. 274
-
-
Fuji, N.1
Otaka, A.2
Ikemura, O.3
Akagi, K.4
Funakoshi, S.5
Hayashi, Y.6
Kuroda, Y.7
Yajima, H.8
-
24
-
-
85023416105
-
-
For 2: amino acid analysis (expected values in parentheses) Glu/Gln 8.68 (8), Ala 2.00 (2), Leu 4.75 (5); FAB mass spectrum 2003, (M + Na)+ = 2003, ΔM = 0; UV-vis (water) λmax = 289 nm, ϵ = 11 170 M−1 cm−1. For 4: Glu/Gln 8.52 (8), Ala 2.00 (2), Leu 5.35 (5); time-of-flight MS (252Cf fission fragment) 1880.7, (M + Na)+ = 1881, ΔM = −0.3; UV-vis λmax = 260 nm.
-
For 2: amino acid analysis (expected values in parentheses) Glu/Gln 8.68 (8), Ala 2.00 (2), Leu 4.75 (5); FAB mass spectrum 2003, (M + Na)+ = 2003, ΔM = 0; UV-vis (water) λmax = 289 nm, ϵ = 11 170 M−1 cm−1. For 4: Glu/Gln 8.52 (8), Ala 2.00 (2), Leu 5.35 (5); time-of-flight MS (252Cf fission fragment) 1880.7, (M + Na)+ = 1881, ΔM = −0.3; UV-vis λmax = 260 nm.
-
-
-
27
-
-
37049063126
-
-
Loss of bipyridine from [Fe(bipy)3]2+ is disfavored (Keq = 10−9.55) and accompanied by a transition from low spin (S = 0) to high spin (5 = 2). See: FeII(pepy)3 is diamagnetic on the basis of its 1H NMR spectrum.
-
Loss of bipyridine from [Fe(bipy)3]2+ is disfavored (Keq = 10−9.55) and accompanied by a transition from low spin (S = 0) to high spin (5 = 2). See: Irving, H.; Mellor, D. H. J. Chem. Soc. 1962, 5237. FeII(pepy)3 is diamagnetic on the basis of its 1H NMR spectrum.
-
(1962)
J. Chem. Soc.
, pp. 5237
-
-
Irving, H.1
Mellor, D.H.2
-
28
-
-
0002223666
-
-
Peaks observed (ppm in Diphosphate): 9.00 (br s), 8.93 (br s), 7.75 (br s), 7,70 (br s), 7.64 (m), 7.56 (m). The mer isomer has C1 symmetry and should theoretically give 18 peaks in this region, unless fast exchange is occurring. For a spectrum of mixture of fac and mer isomers, see
-
Peaks observed (ppm in Diphosphate): 9.00 (br s), 8.93 (br s), 7.75 (br s), 7,70 (br s), 7.64 (m), 7.56 (m). The mer isomer has C1 symmetry and should theoretically give 18 peaks in this region, unless fast exchange is occurring. For a spectrum of mixture of fac and mer isomers, see: Cook, M. J.; Lewis, A. P.; McAuliffe, G. S. G.; Thomson, A. J. Inorg. Chim. Acta 1982, L25–L28.
-
(1982)
J. Inorg. Chim. Acta
, pp. L25–L28
-
-
Cook, M.J.1
Lewis, A.P.2
McAuliffe, G.S.G.3
Thomson, A.4
-
29
-
-
0018118041
-
-
Chang, C. T.; Wu, C.-S.C.; Yang, J. T. Anal. Biochem. 1978, 91, 13.
-
(1978)
Anal. Biochem.
, vol.91
, pp. 13
-
-
Chang, C.T.1
Wu, C.-S.C.2
Yang, J.T.3
-
30
-
-
0025301439
-
-
Johnson, C. Proteins: Struct., Funct., Genet. 1990, 7, 205.
-
(1990)
Proteins: Struct., Funct., Genet.
, vol.7
, pp. 205
-
-
Johnson, C.1
-
34
-
-
0001050485
-
-
Milder, S. J.; Gold, J. S.; Kliger, D. S. J. Am. Chem. Soc. 1986, 108, 8295.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 8295
-
-
Milder, S.J.1
Gold, J.S.2
Kliger, D.S.3
-
39
-
-
0025040232
-
-
Hecht, M. H.; Richardson, J. S.; Richardson, D. C.; Ogden, R. C. Science 1990, 249, 884.
-
(1990)
Science
, vol.249
, pp. 884
-
-
Hecht, M.H.1
Richardson, J.S.2
Richardson, D.C.3
Ogden, R.C.4
-
40
-
-
0025272940
-
-
Also see refs 2 and 3a-d.
-
Cohen, C.; Parry, D. A. D. Proteins. Struct., Funct., Genet. 1990, 7, 1. Also see refs 2 and 3a-d.
-
(1990)
Proteins. Struct., Funct., Genet.
, vol.7
, pp. 1
-
-
Cohen, C.1
Parry, D.A.D.2
-
41
-
-
33845281067
-
-
Ho and DeGrado reported that a 33-residue peptide with two amphiphilic helical regions designed to dimerize to a four-helix bundle trimerized by forming two three-helix bundles
-
Ho and DeGrado reported that a 33-residue peptide with two amphiphilic helical regions designed to dimerize to a four-helix bundle trimerized by forming two three-helix bundles. Ho, S. P.; DeGrado, W. F. J. Am. Chem. Soc. 1987, 109, 6751.
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 6751
-
-
Ho, S.P.1
DeGrado, W.F.2
|