메뉴 건너뛰기




Volumn 113, Issue 52, 2016, Pages E8396-E8405

Assembly of long error-prone reads using de Bruijn graphs

Author keywords

De Bruijn graph; Genome assembly; Single molecule sequencing

Indexed keywords

ANALYTICAL ERROR; ARTICLE; BACTERIAL GENOME; BENCHMARKING; CONSENSUS SEQUENCE; DE BRUIJN GRAPH; GENE SEQUENCE; MATHEMATICAL PHENOMENA; METAGENOME; NONHUMAN; PRIORITY JOURNAL; SEQUENCE ANALYSIS; XANTHOMONAS ORYZAE; ALGORITHM; DNA SEQUENCE; ESCHERICHIA COLI; GENETICS; GENOMICS; HIGH THROUGHPUT SEQUENCING; PROCEDURES; REPRODUCIBILITY; SOFTWARE; XANTHOMONAS;

EID: 85007507215     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1604560113     Document Type: Article
Times cited : (220)

References (55)
  • 1
    • 84930851165 scopus 로고    scopus 로고
    • Assembling large genomes with single-molecule sequencing and locality-sensitive hashing
    • Berlin K, et al. (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623-630.
    • (2015) Nat Biotechnol , vol.33 , pp. 623-630
    • Berlin, K.1
  • 2
    • 84880798154 scopus 로고    scopus 로고
    • Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data
    • Chin C-S, et al. (2013) Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat Methods 10:563-569.
    • (2013) Nat Methods , vol.10 , pp. 563-569
    • Chin, C.-S.1
  • 3
    • 84977828810 scopus 로고    scopus 로고
    • Oxford nanopore sequencing and de novo assembly of a eukaryotic genome
    • Goodwin S, et al. (2015) Oxford nanopore sequencing and de novo assembly of a eukaryotic genome. Genome Res 25:1758-1756.
    • (2015) Genome Res , vol.25 , pp. 1758-1856
    • Goodwin, S.1
  • 4
    • 84938421951 scopus 로고    scopus 로고
    • A complete bacterial genome assembled de novo using only nanopore sequencing data
    • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733-735.
    • (2015) Nat Methods , vol.12 , pp. 733-735
    • Loman, N.J.1    Quick, J.2    Simpson, J.T.3
  • 5
    • 84883664726 scopus 로고    scopus 로고
    • Reducing assembly complexity of microbial genomes with singlemolecule sequencing
    • Koren S, et al. (2013) Reducing assembly complexity of microbial genomes with singlemolecule sequencing. Genome Biol 14:101.
    • (2013) Genome Biol , vol.14 , pp. 101
    • Koren, S.1
  • 6
    • 84913554630 scopus 로고    scopus 로고
    • One chromosome, one contig: Complete microbial genomes from long-read sequencing and assembly
    • Koren S, Phillippy AM (2015) One chromosome, one contig: Complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23: 110-120.
    • (2015) Curr Opin Microbiol , vol.23 , pp. 110-120
    • Koren, S.1    Phillippy, A.M.2
  • 7
    • 84943421204 scopus 로고    scopus 로고
    • FinisherSC: A repeat-aware tool for upgrading de-novo assembly using long reads
    • Lam KK, LaButti K, Khalak A, Tse D (2015) FinisherSC: A repeat-aware tool for upgrading de-novo assembly using long reads. Bioinformatics 31:3207-3209.
    • (2015) Bioinformatics , vol.31 , pp. 3207-3209
    • Lam, K.K.1    LaButti, K.2    Khalak, A.3    Tse, D.4
  • 8
    • 84925497196 scopus 로고    scopus 로고
    • Resolving the complexity of the human genome using single-molecule sequencing
    • Chaisson MJ, et al. (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608-611.
    • (2015) Nature , vol.517 , pp. 608-611
    • Chaisson, M.J.1
  • 9
    • 84897965254 scopus 로고    scopus 로고
    • Reconstructing complex regions of genomes using longread sequencing technology
    • Huddleston J, et al. (2014) Reconstructing complex regions of genomes using longread sequencing technology. Genome Res 24:688-696.
    • (2014) Genome Res , vol.24 , pp. 688-696
    • Huddleston, J.1
  • 10
    • 84922708753 scopus 로고    scopus 로고
    • Resolving complex tandem repeats with long reads
    • Ummat A, Bashir A (2014) Resolving complex tandem repeats with long reads. Bioinformatics 30:3491-3498.
    • (2014) Bioinformatics , vol.30 , pp. 3491-3498
    • Ummat, A.1    Bashir, A.2
  • 11
    • 84958202885 scopus 로고    scopus 로고
    • Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships
    • Booher NJ, et al. (2015) Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships. Microb Genom 1:1-22.
    • (2015) Microb Genom , vol.1 , pp. 1-22
    • Booher, N.J.1
  • 12
    • 0029197192 scopus 로고
    • Combinatorial algorithms for DNA sequence assembly
    • Kececioglu JD, Myers EW (1995) Combinatorial algorithms for DNA sequence assembly. Algorithmica 13:7-51.
    • (1995) Algorithmica , vol.13 , pp. 7-51
    • Kececioglu, J.D.1    Myers, E.W.2
  • 13
    • 27544497879 scopus 로고    scopus 로고
    • The fragment assembly string graph
    • Myers EW (2005) The fragment assembly string graph. Bioinformatics 21:79-85.
    • (2005) Bioinformatics , vol.21 , pp. 79-85
    • Myers, E.W.1
  • 14
    • 84958554065 scopus 로고    scopus 로고
    • Efficient local alignment discovery amongst noisy long reads
    • eds Brown D, Morgenstern B (Springer, New York)
    • Myers EW (2014) Efficient local alignment discovery amongst noisy long reads. Algorithms in Bioinformatics, Lecture Notes in Computer Science, eds Brown D, Morgenstern B (Springer, New York), Vol 8701, pp 52-67.
    • (2014) Algorithms in Bioinformatics, Lecture Notes in Computer Science , vol.8701 , pp. 52-67
    • Myers, E.W.1
  • 15
    • 0029312687 scopus 로고
    • A new algorithm for DNA sequence assembly
    • Idury RM, Waterman MS (1995) A new algorithm for DNA sequence assembly. J Comput Biol 2:291-306.
    • (1995) J Comput Biol , vol.2 , pp. 291-306
    • Idury, R.M.1    Waterman, M.S.2
  • 16
    • 84863181401 scopus 로고    scopus 로고
    • Comparison of the two major classes of assembly algorithms: Overlap-layout-consensus and de-Bruijn-graph
    • Li Z, et al. (2012) Comparison of the two major classes of assembly algorithms: Overlap-layout-consensus and de-Bruijn-graph. Brief Funct Genomics 11:25-37.
    • (2012) Brief Funct Genomics , vol.11 , pp. 25-37
    • Li, Z.1
  • 18
    • 4644275238 scopus 로고    scopus 로고
    • De novo repeat classification and fragment assembly
    • Pevzner PA, Tang H, Tesler G (2004) De novo repeat classification and fragment assembly. Genome Res 14:1786-1796.
    • (2004) Genome Res , vol.14 , pp. 1786-1796
    • Pevzner, P.A.1    Tang, H.2    Tesler, G.3
  • 19
    • 34249780156 scopus 로고    scopus 로고
    • Shotgun protein sequencing: Assembly of peptide tandem mass spectra from mixtures of modified proteins
    • Bandeira N, Clauser KR, Pevzner PA (2007) Shotgun protein sequencing: Assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics 6:1123-1134.
    • (2007) Mol Cell Proteomics , vol.6 , pp. 1123-1134
    • Bandeira, N.1    Clauser, K.R.2    Pevzner, P.A.3
  • 20
  • 21
    • 43149086380 scopus 로고    scopus 로고
    • ALLPATHS: De novo assembly of whole-genome shotgun microreads
    • Butler J, et al. (2008) ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res 18:810-820.
    • (2008) Genome Res , vol.18 , pp. 810-820
    • Butler, J.1
  • 22
    • 66449136667 scopus 로고    scopus 로고
    • ABySS: A parallel assembler for short read sequence data
    • Simpson JT, et al. (2009) ABySS: A parallel assembler for short read sequence data. Genome Res 19:1117-1123.
    • (2009) Genome Res , vol.19 , pp. 1117-1123
    • Simpson, J.T.1
  • 23
    • 43149115851 scopus 로고    scopus 로고
    • Velvet: Algorithms for de novo short read assembly using de Bruijn graphs
    • Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821-829.
    • (2008) Genome Res , vol.18 , pp. 821-829
    • Zerbino, D.R.1    Birney, E.2
  • 24
    • 84860771820 scopus 로고    scopus 로고
    • SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing
    • Bankevich A, et al. (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455-477.
    • (2012) J Comput Biol , vol.19 , pp. 455-477
    • Bankevich, A.1
  • 25
    • 0024474332 scopus 로고
    • L-tuple DNA sequencing: Computer analysis
    • Pevzner PA (1989) l-tuple DNA sequencing: Computer analysis. J Biomol Struct Dyn 7:63-73.
    • (1989) J Biomol Struct Dyn , vol.7 , pp. 63-73
    • Pevzner, P.A.1
  • 26
    • 77957787194 scopus 로고    scopus 로고
    • DRIMM-Synteny: Decomposing genomes into evolutionary conserved segments
    • Pham SK, Pevzner PA (2010) DRIMM-Synteny: Decomposing genomes into evolutionary conserved segments. Bioinformatics 26:2509-2516.
    • (2010) Bioinformatics , vol.26 , pp. 2509-2516
    • Pham, S.K.1    Pevzner, P.A.2
  • 27
    • 84856246802 scopus 로고    scopus 로고
    • De novo assembly and genotyping of variants using colored de Bruijn graphs
    • Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet 44:226-232.
    • (2012) Nat Genet , vol.44 , pp. 226-232
    • Iqbal, Z.1    Caccamo, M.2    Turner, I.3    Flicek, P.4    McVean, G.5
  • 28
    • 84974621996 scopus 로고    scopus 로고
    • Immunoglobulin classification using the colored antibody graph
    • Bonissone SR, Pevzner PA (2016) Immunoglobulin classification using the colored antibody graph. J Comp Biol 23:483-494.
    • (2016) J Comp Biol , vol.23 , pp. 483-494
    • Bonissone, S.R.1    Pevzner, P.A.2
  • 29
    • 84971367817 scopus 로고    scopus 로고
    • What is the difference between the breakpoint graph and the de Bruijn graph?
    • Lin Y, Nurk S, Pevzner PA (2014) What is the difference between the breakpoint graph and the de Bruijn graph? BMC Genom 15:6.
    • (2014) BMC Genom , vol.15 , pp. 6
    • Lin, Y.1    Nurk, S.2    Pevzner, P.A.3
  • 31
    • 0034708758 scopus 로고    scopus 로고
    • A whole-genome assembly of Drosophila
    • Myers E, et al. (2000) A whole-genome assembly of Drosophila. Science 287:2196-2204.
    • (2000) Science , vol.287 , pp. 2196-2204
    • Myers, E.1
  • 34
    • 84880938470 scopus 로고    scopus 로고
    • TAL effectors: Highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins
    • Doyle E, Stoddard B, Voytaz D, Bogdanove A (2013) TAL effectors: Highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23: 390-398.
    • (2013) Trends Cell Biol , vol.23 , pp. 390-398
    • Doyle, E.1    Stoddard, B.2    Voytaz, D.3    Bogdanove, A.4
  • 35
    • 84955061379 scopus 로고    scopus 로고
    • Bordetella pertussis strain lacking pertactin and pertussis toxin
    • Williams M, et al. (2016) Bordetella pertussis strain lacking pertactin and pertussis toxin. Emerg Infect Dis. 22:319-322.
    • (2016) Emerg Infect Dis. , vol.22 , pp. 319-322
    • Williams, M.1
  • 38
    • 84902509478 scopus 로고    scopus 로고
    • ExSPAnder: A universal repeat resolver for DNA fragment assembly
    • Prjibelski AD, et al. (2014) ExSPAnder: A universal repeat resolver for DNA fragment assembly. Bioinformatics 30:293-301.
    • (2014) Bioinformatics , vol.30 , pp. 293-301
    • Prjibelski, A.D.1
  • 40
    • 84964474556 scopus 로고    scopus 로고
    • HybridSPAdes: An algorithm for coassembly of short and long reads
    • Antipov D, Korobeynikov A, Pevzner PA (2015) hybridSPAdes: An algorithm for coassembly of short and long reads. Bioinformatics 32:1009-1115.
    • (2015) Bioinformatics , vol.32 , pp. 1009-1115
    • Antipov, D.1    Korobeynikov, A.2    Pevzner, P.A.3
  • 41
    • 84945491851 scopus 로고    scopus 로고
    • Single-cell genomics-based analysis of virushost interactions in marine surface bacterioplankton
    • Labont JM, et al. (2015) Single-cell genomics-based analysis of virushost interactions in marine surface bacterioplankton. ISME J 9:2386-2399.
    • (2015) ISME J , vol.9 , pp. 2386-2399
    • Labont, J.M.1
  • 42
    • 84924388692 scopus 로고    scopus 로고
    • Minion nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island
    • Ashton PM, et al. (2015) Minion nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296-300.
    • (2015) Nat Biotechnol , vol.33 , pp. 296-300
    • Ashton, P.M.1
  • 43
    • 84991528128 scopus 로고    scopus 로고
    • A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data
    • Risse J, et al. (2015) A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. Gigascience 4:60.
    • (2015) Gigascience , vol.4 , pp. 60
    • Risse, J.1
  • 44
    • 84866266717 scopus 로고    scopus 로고
    • Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory
    • Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory. BMC Bioinformatics 13:238.
    • (2012) BMC Bioinformatics , vol.13 , pp. 238
    • Chaisson, M.J.1    Tesler, G.2
  • 45
    • 84863651532 scopus 로고    scopus 로고
    • Hybrid error correction and de novo assembly of single-molecule sequencing reads
    • Koren S, et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693-700.
    • (2012) Nat Biotechnol , vol.30 , pp. 693-700
    • Koren, S.1
  • 46
    • 84930838411 scopus 로고    scopus 로고
    • Long-read, whole-genome shotgun sequence data for five model organisms
    • Kim KE, et al. (2014) Long-read, whole-genome shotgun sequence data for five model organisms. Sci Data 1:140045.
    • (2014) Sci Data , vol.1 , pp. 140045
    • Kim, K.E.1
  • 47
    • 80053582792 scopus 로고    scopus 로고
    • Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp
    • Bogdanove AJ, et al. (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450-5464.
    • (2011) J Bacteriol , vol.193 , pp. 5450-5464
    • Bogdanove, A.J.1
  • 48
    • 46049099151 scopus 로고    scopus 로고
    • Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae PXO99A
    • Salzberg SL, et al. (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae PXO99A. BMC Genom 9:204
    • (2008) BMC Genom , vol.9 , pp. 204
    • Salzberg, S.L.1
  • 49
    • 57049128884 scopus 로고    scopus 로고
    • Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches
    • Trost BM, Dong G (2008) Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature 456:485-488.
    • (2008) Nature , vol.456 , pp. 485-488
    • Trost, B.M.1    Dong, G.2
  • 50
    • 56049123651 scopus 로고    scopus 로고
    • In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont
    • Lopanik NB, et al. (2008) In vivo and in vitro trans-acylation by BryP, the putative bryostatin pathway acyltransferase derived from an uncultured marine symbiont. Chem Biol 15:1175-1186.
    • (2008) Chem Biol , vol.15 , pp. 1175-1186
    • Lopanik, N.B.1
  • 51
  • 52
  • 54
    • 79959920872 scopus 로고    scopus 로고
    • AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters
    • Medema MH, et al. (2011) antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res 39:w339.
    • (2011) Nucleic Acids Res , vol.39 , pp. w339
    • Medema, M.H.1
  • 55
    • 34249848751 scopus 로고    scopus 로고
    • CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
    • Parra G, Bradnam K, Korf I (2007) CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061-1067.
    • (2007) Bioinformatics , vol.23 , pp. 1061-1067
    • Parra, G.1    Bradnam, K.2    Korf, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.