-
1
-
-
84923310025
-
Using all energy in a battery
-
Dudney, N.J., Li, J., Using all energy in a battery. Science 347 (2015), 131–132.
-
(2015)
Science
, vol.347
, pp. 131-132
-
-
Dudney, N.J.1
Li, J.2
-
2
-
-
84914126929
-
Heat-treatment of metal–organic frameworks for green energy applications
-
Lux, L., Williams, K., Ma, S., Heat-treatment of metal–organic frameworks for green energy applications. Cryst. Eng. Comm 17 (2015), 10–22.
-
(2015)
Cryst. Eng. Comm
, vol.17
, pp. 10-22
-
-
Lux, L.1
Williams, K.2
Ma, S.3
-
3
-
-
84896065407
-
Iron oxide based advanced anode materials for lithium ion batteries
-
1300958
-
Zhang, L., Wu, H.B., Lou, X.W.D., Iron oxide based advanced anode materials for lithium ion batteries. Adv. Eng. Mater. 4 (2014), 1–11 1300958.
-
(2014)
Adv. Eng. Mater.
, vol.4
, pp. 1-11
-
-
Zhang, L.1
Wu, H.B.2
Lou, X.W.D.3
-
4
-
-
84901667397
-
3 nanoparticle-decorated nanomesh graphene as anodes for lithium-ion batteries
-
3 nanoparticle-decorated nanomesh graphene as anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 6 (2014), 7189–7197.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 7189-7197
-
-
Zhu, X.1
Song, X.2
Ma, X.3
Ning, G.4
-
5
-
-
84925427747
-
Asymmetric rate behavior of Si anodes for lithium ion batteries: ultrafast de lithiation versus sluggish lithiation at high current densities
-
Li, J., Dudney, N.J., Xiao, X., Cheng, Y.T., Liang, C., Verbrugge, M.W., Asymmetric rate behavior of Si anodes for lithium ion batteries: ultrafast de lithiation versus sluggish lithiation at high current densities. Adv. Eng. Mater., 5, 2015, 10.1002/aenm.201401627.
-
(2015)
Adv. Eng. Mater.
, vol.5
-
-
Li, J.1
Dudney, N.J.2
Xiao, X.3
Cheng, Y.T.4
Liang, C.5
Verbrugge, M.W.6
-
6
-
-
84912559228
-
Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries
-
Zhang, W., Gong, Y., Mellott, N.P., Liu, D., Li, J., Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources 276 (2015), 39–45.
-
(2015)
J. Power Sources
, vol.276
, pp. 39-45
-
-
Zhang, W.1
Gong, Y.2
Mellott, N.P.3
Liu, D.4
Li, J.5
-
7
-
-
84910032559
-
Dealloying to porous hybrid manganese oxides microspheres for high performance anodes in lithium ion batteries
-
Jiang, X., Wang, Y., Yang, L., Li, D., Xu, H., Ding, Y., Dealloying to porous hybrid manganese oxides microspheres for high performance anodes in lithium ion batteries. J. Power Sources 274 (2015), 862–868.
-
(2015)
J. Power Sources
, vol.274
, pp. 862-868
-
-
Jiang, X.1
Wang, Y.2
Yang, L.3
Li, D.4
Xu, H.5
Ding, Y.6
-
8
-
-
84928969759
-
3–Carbon nanofibers as advanced anode material for Li-ion batteries
-
3–Carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano, 2015, 4026–4035.
-
(2015)
ACS Nano
, pp. 4026-4035
-
-
Cho, J.S.1
Hong, Y.J.2
Kang, Y.C.3
-
10
-
-
84901654510
-
4 anode with enhanced rate capability for lithium-ion batteries
-
4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces, 6, 2014, 7236–7243.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 7236-7243
-
-
Huang, G.1
Xu, S.2
Lu, S.3
Li, L.4
Sun, H.5
-
11
-
-
84907966506
-
2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials
-
143905
-
2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105 (2014), 1–5 143905.
-
(2014)
Appl. Phys. Lett.
, vol.105
, pp. 1-5
-
-
Xing, G.1
Wang, Y.2
Wong, J.3
Shi, Y.4
Huang, Z.5
Li, S.6
Yang, H.7
-
12
-
-
85027931422
-
High performance and ultra stable lithium ion batteries based on MOF derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode
-
Zhang, G., Hou, S., Zhang, H., Zeng, W., Yan, F., Li, C.C., Duan, H., High performance and ultra stable lithium ion batteries based on MOF derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27 (2015), 2400–2405.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2400-2405
-
-
Zhang, G.1
Hou, S.2
Zhang, H.3
Zeng, W.4
Yan, F.5
Li, C.C.6
Duan, H.7
-
13
-
-
84903446873
-
Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries
-
Jiang, H., Hu, Y., Guo, S., Yan, C., Lee, P.S., Li, C., Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8 (2014), 6038–6046.
-
(2014)
ACS Nano
, vol.8
, pp. 6038-6046
-
-
Jiang, H.1
Hu, Y.2
Guo, S.3
Yan, C.4
Lee, P.S.5
Li, C.6
-
14
-
-
84865975388
-
2 nanotube arrays as durable lithium-ion battery negative electrodes
-
2 nanotube arrays as durable lithium-ion battery negative electrodes. J.Phys. Chem. C 116 (2012), 18669–18677.
-
(2012)
J.Phys. Chem. C
, vol.116
, pp. 18669-18677
-
-
Wu, Q.L.1
Li, J.2
Deshpande, R.D.3
Subramanian, N.4
Rankin, S.E.5
Yang, F.6
Cheng, Y.-T.7
-
15
-
-
80053332289
-
2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries
-
2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries., 5 (2011), 7100–7107 ACS Nano 5 (2011), 7100–7107.
-
(2011)
ACS Nano
, vol.5
, pp. 7100-7107
-
-
Sun, Y.1
Hu, X.2
Luo, W.3
Huang, Y.4
-
16
-
-
85015495162
-
4/C octahedra with hollow interiors for high rate lithium ion batteries
-
4/C octahedra with hollow interiors for high rate lithium ion batteries. Adv.Mater. 26 (2014), 6622–6628.
-
(2014)
Adv.Mater.
, vol.26
, pp. 6622-6628
-
-
Zou, F.1
Hu, X.2
Li, Z.3
Qie, L.4
Hu, C.5
Zeng, R.6
Jiang, Y.7
Huang, Y.8
-
17
-
-
84863116817
-
2 nanorods
-
2 nanorods. Chem. Mater. 24 (2012), 457–463.
-
(2012)
Chem. Mater.
, vol.24
, pp. 457-463
-
-
Guo, B.1
Fang, X.2
Li, B.3
Shi, Y.4
Ouyang, C.5
Hu, Y.-S.6
Wang, Z.7
Stucky, G.D.8
Chen, L.9
-
19
-
-
71949124253
-
2 materials with highly reversible lithium storage capacity
-
2 materials with highly reversible lithium storage capacity. Nano lett. 9 (2009), 4215–4220.
-
(2009)
Nano lett.
, vol.9
, pp. 4215-4220
-
-
Shi, Y.1
Guo, B.2
Corr, S.A.3
Shi, Q.4
Hu, Y.-S.5
Heier, K.R.6
Chen, L.7
Seshadri, R.8
Stucky, G.D.9
-
20
-
-
84898004965
-
Iron oxide nanoparticle and graphene nanoribbon composite as an anode material for high performance Li-ion batteries
-
Lin, J., Raji, A.R.O., Nan, K., Peng, Z., Yan, Z., Samuel, E.L., Natelson, D., Tour, J.M., Iron oxide nanoparticle and graphene nanoribbon composite as an anode material for high performance Li-ion batteries. Adv. Funct. Mater. 24 (2014), 2044–2048.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2044-2048
-
-
Lin, J.1
Raji, A.R.O.2
Nan, K.3
Peng, Z.4
Yan, Z.5
Samuel, E.L.6
Natelson, D.7
Tour, J.M.8
-
21
-
-
77957714684
-
4−graphene hybrid as a high-capacity anode material for lithium ion batteries
-
4−graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132 (2010), 13978–13980.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13978-13980
-
-
Wang, H.1
Cui, L.F.2
Yang, Y.3
Sanchez Casalongue, H.4
Robinson, J.T.5
Liang, Y.6
Cui, Y.7
Dai, H.8
-
22
-
-
84937731744
-
4 graphene nanoribbons as anode materials
-
4 graphene nanoribbons as anode materials. Adv. Energy Mater., 5, 2015, 10.1002/aenm.201500171.
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Li, L.1
Kovalchuk, A.2
Fei, H.3
Peng, Z.4
Li, Y.5
Kim, N.D.6
Xiang, C.7
Yang, Y.8
Ruan, G.9
Tour, J.M.10
-
23
-
-
84894434300
-
2O along with improved rate performance
-
2O along with improved rate performance. Adv. Funct. Mater. 24 (2014), 1059–1066.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 1059-1066
-
-
Lv, D.1
Gordin, M.L.2
Yi, R.3
Xu, T.4
Song, J.5
Jiang, Y.B.6
Choi, D.7
Wang, D.8
-
24
-
-
84893016291
-
4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries
-
4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim. Acta 120 (2014), 452–459.
-
(2014)
Electrochim. Acta
, vol.120
, pp. 452-459
-
-
Park, S.-K.1
Jin, A.2
Yu, S.-H.3
Ha, J.4
Jang, B.5
Bong, S.6
Woo, S.7
Sung, Y.-E.8
Piao, Y.9
-
25
-
-
84937421404
-
4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries
-
4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 92 (2015), 119–125.
-
(2015)
Carbon
, vol.92
, pp. 119-125
-
-
Qu, Q.1
Gao, T.2
Zheng, H.3
Li, X.4
Liu, H.5
Shen, M.6
Shao, J.7
Zheng, H.8
-
27
-
-
84899576687
-
2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries
-
2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136 (2014), 5852–5855.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5852-5855
-
-
Qiu, B.1
Xing, M.2
Zhang, J.3
-
28
-
-
84863078675
-
2/graphite oxide composite anode for lithium-ion batteries
-
2/graphite oxide composite anode for lithium-ion batteries. J. Phys. Chem. Lett. 3 (2012), 309–314.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 309-314
-
-
Xu, Y.1
Yi, R.2
Yuan, B.3
Wu, X.F.4
Dunwell, M.5
Lin, Q.L.6
Fei, L.7
Deng, S.G.8
Andersen, P.9
Wang, D.H.10
Luo, H.M.11
-
29
-
-
84864578600
-
2–graphene nanocomposite as anode material for lithium-ion batteries
-
2–graphene nanocomposite as anode material for lithium-ion batteries. Electrochim. Acta 79 (2012), 148–153.
-
(2012)
Electrochim. Acta
, vol.79
, pp. 148-153
-
-
Tang, Q.1
Shan, Z.2
Wang, L.3
Qin, X.4
-
30
-
-
77955529587
-
Self-assembled graphene hydrogel via a one-step hydrothermal process
-
Xu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4 (2010), 4324–4330.
-
(2010)
ACS Nano
, vol.4
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
Shi, G.4
-
31
-
-
33947461960
-
5 composite hydrogel: fabrication, preparation of graphitic oxide
-
5 composite hydrogel: fabrication, preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1958.
-
(1958)
J. Am. Chem. Soc.
, vol.80
-
-
Hummers, W.S.1
Offeman, R.E.2
-
32
-
-
84894049559
-
5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor
-
5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor. Chem. Phys. Chem. 15 (2014), 366–373.
-
(2014)
Chem. Phys. Chem.
, vol.15
, pp. 366-373
-
-
Zhang, H.1
Xie, A.J.2
Wang, C.P.3
Wang, H.S.4
Shen, Y.H.5
Tian, X.Y.6
-
33
-
-
84870406684
-
The new role of graphene as a macromolecular photosensitizer
-
Zhang, Y., Zhang, N., Tang, Z.-R., Xu, Y.-J., The new role of graphene as a macromolecular photosensitizer. ACS Nano 6 (2012), 9777–9789.
-
(2012)
ACS Nano
, vol.6
, pp. 9777-9789
-
-
Zhang, Y.1
Zhang, N.2
Tang, Z.-R.3
Xu, Y.-J.4
-
34
-
-
84876115061
-
2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode
-
2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl. Mat. Inter, 5, 2013, 2555–2566.
-
(2013)
ACS Appl. Mat. Inter
, vol.5
, pp. 2555-2566
-
-
Bhaskar, A.1
Deepa, M.2
Rao, T.N.3
-
35
-
-
84862533823
-
2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes
-
2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes. J. Mater. Chem. 22 (2012), 13334–13340.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 13334-13340
-
-
Zhao, X.1
Cao, M.2
Liu, B.3
Tian, Y.4
Hu, C.5
-
36
-
-
33744471173
-
Functionalized single graphene sheets derived from splitting graphite oxide
-
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud׳homme, R.K., Car, R., Saville, D.A., Aksay, I.A., Functionalized single graphene sheets derived from splitting graphite oxide. Phys. Chem. B 110 (2006), 8535–8539.
-
(2006)
Phys. Chem. B
, vol.110
, pp. 8535-8539
-
-
Schniepp, H.C.1
Li, J.L.2
McAllister, M.J.3
Sai, H.4
Herrera-Alonso, M.5
Adamson, D.H.6
Prud׳homme, R.K.7
Car, R.8
Saville, D.A.9
Aksay, I.A.10
-
37
-
-
84857715095
-
2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries
-
2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mat. Inter, 3, 2011, 4853–4857.
-
(2011)
ACS Appl. Mat. Inter
, vol.3
, pp. 4853-4857
-
-
Zhou, L.1
Wu, H.B.2
Wang, Z.3
Lou, X.W.4
-
39
-
-
84879980428
-
2 microspheres with excellent electrochemical performance as a Li-ion battery anode
-
2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J. Mater. Chem. A 1 (2013), 6858–6864.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 6858-6864
-
-
Zhang, X.1
Song, X.2
Gao, S.3
Xu, Y.4
Cheng, X.5
Zhao, H.6
Huo, L.7
-
40
-
-
84949115206
-
2-GO composites as anode material for lithium-ion batteries
-
2-GO composites as anode material for lithium-ion batteries. J. Phys. Chem. C 118 (2014), 24890–24897.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 24890-24897
-
-
Hu, S.1
Yin, F.2
Uchaker, E.3
Chen, W.4
Zhang, M.5
Zhou, J.6
Qi, Y.7
Cao, G.8
|