-
1
-
-
85083954208
-
Generative modeling of convolutional neural networks
-
Dai, J.; Lu, Y.; and Wu, Y. N. 2015. Generative modeling of convolutional neural networks. In ICLR.
-
(2015)
ICLR.
-
-
Dai, J.1
Lu, Y.2
Wu, Y.N.3
-
2
-
-
0031120321
-
Inducing features of random fields
-
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. Inducing features of random fields. PAMI 19(4):380-393.
-
(1997)
PAMI
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
4
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei- Fei, L. 2009. Imagenet: A large-scale hierarchical image database. In CVPR, 248-255. IEEE.
-
(2009)
CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84959184995
-
Learning to generate chairs with convolutional neural networks
-
Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015. Learning to generate chairs with convolutional neural networks. In CVPR.
-
(2015)
CVPR.
-
-
Dosovitskiy, E.1
Springenberg, J.T.2
Brox, T.3
-
8
-
-
84983208884
-
DRAW: A recurrent neural network for image generation
-
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D. J.; and Wierstra, D. 2015. DRAW: A recurrent neural network for image generation. In ICML, 1462-1471.
-
(2015)
ICML
, pp. 1462-1471
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
10
-
-
33748852900
-
Unsupervised discovery of nonlinear structure using contrastive backpropagation
-
Hinton, G.; Osindero, S.;Welling, M.; and Teh, Y.-W. 2006. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive science 30(4):725-731.
-
(2006)
Cognitive Science
, vol.30
, Issue.4
, pp. 725-731
-
-
Hinton, G.1
Osindero, S.2
Welling, M.3
Teh, Y.-W.4
-
11
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. 2002. Training products of experts by minimizing contrastive divergence. Neural Computation 14(8):1771-1800.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
12
-
-
84923913871
-
Unsupervised learning of compositional sparse code for natural image representation
-
Hong, Y.; Si, Z.; Hu, W.; Zhu, S.; and Wu, Y. 2014. Unsupervised learning of compositional sparse code for natural image representation. Quarterly of Applied Mathematics 79:373-406.
-
(2014)
Quarterly of Applied Mathematics
, vol.79
, pp. 373-406
-
-
Hong, Y.1
Si, Z.2
Hu, W.3
Zhu, S.4
Wu, Y.5
-
14
-
-
85083952489
-
Auto-encoding variational bayes
-
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. ICLR.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, 1097-1105.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
20
-
-
84919796093
-
Stochastic back propagation and approximate inference in deep generative models
-
Jebara, T. and Xing, E. P. eds., JMLR Workshop and Conference Proceedings
-
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In Jebara, T., and Xing, E. P., eds., ICML, 1278-1286. JMLR Workshop and Conference Proceedings.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
21
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., and Zisserman, A. 2015. Very deep convolutional networks for large-scale image recognition. ICLR.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
22
-
-
84905220041
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2015. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR.
-
(2015)
ICLR
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
23
-
-
84937118999
-
Matconvnet - convolutional neural networks for matlab
-
abs/1412.4564
-
Vedaldi, A., and Lenc, K. 2014. Matconvnet - convolutional neural networks for matlab. CoRR abs/1412.4564.
-
(2014)
CoRR
-
-
Vedaldi, A.1
Lenc, K.2
-
24
-
-
79951911492
-
Learning active basis model for object detection and recognitio
-
Wu, Y. N.; Si, Z.; Gong, H.; and Zhu, S.-C. 2010. Learning active basis model for object detection and recognitio. IJCV 90:198-235.
-
(2010)
IJCV
, vol.90
, pp. 198-235
-
-
Wu, Y.N.1
Si, Z.2
Gong, H.3
Zhu, S.-C.4
-
25
-
-
0034223951
-
Equivalence of julesz ensembles and frame models
-
Wu, Y. N.; Zhu, S.-C.; and Liu, X. 2000. Equivalence of julesz ensembles and frame models. IJCV 38:247-265.
-
(2000)
IJCV
, vol.38
, pp. 247-265
-
-
Wu, Y.N.1
Zhu, S.-C.2
Liu, X.3
-
26
-
-
84939568551
-
Learning sparse frame models for natural image patterns
-
Xie, J.; Hu, W.; Zhu, S.-C.; and Wu, Y. N. 2015a. Learning sparse frame models for natural image patterns. IJCV 114:91-112.
-
(2015)
IJCV
, vol.114
, pp. 91-112
-
-
Xie, J.1
Hu, W.2
Zhu, S.-C.3
Wu, Y.N.4
-
28
-
-
33644756784
-
On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes, L. 1999. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes 65(3-4):177-228.
-
(1999)
Stochastics: An International Journal of Probability and Stochastic Processes
, vol.65
, Issue.3-4
, pp. 177-228
-
-
Younes, L.1
-
29
-
-
84937902251
-
Visualizing and understanding convolutional neural networks
-
Zeiler, M. D., and Fergus, R. 2014. Visualizing and understanding convolutional neural networks. ECCV.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
30
-
-
0032316524
-
Grade: Gibbs reaction and diffusion equations
-
Zhu, S., and Mumford, D. 1998. Grade: Gibbs reaction and diffusion equations. In ICCV.
-
(1998)
ICCV.
-
-
Zhu, S.1
Mumford, D.2
-
32
-
-
0034205013
-
Exploring texture ensembles by efficient markov chain monte carlo - Towards a'trichromacy' theory of texture
-
Zhu, S. C.; Liu, X.; and Wu, Y. N. 2000. Exploring texture ensembles by efficient markov chain monte carlo - Towards a'trichromacy' theory of texture. PAMI 22:245-261.
-
(2000)
PAMI
, vol.22
, pp. 245-261
-
-
Zhu, S.C.1
Liu, X.2
Wu, Y.N.3
-
33
-
-
0000806445
-
Minimax entropy principle and its application to texture modeling
-
Zhu, S. C.;Wu, Y. N.; and Mumford, D. 1997. Minimax entropy principle and its application to texture modeling. Neural Computation 9(8):1627-1660.
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1627-1660
-
-
Zhu, S.C.1
Wu, Y.N.2
Mumford, D.3
|