메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1902-1910

Learning frame models using CNN filters

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BANDPASS FILTERS; COMPUTER VISION; CONVOLUTION; NEURAL NETWORKS;

EID: 85007240797     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (55)

References (33)
  • 1
    • 85083954208 scopus 로고    scopus 로고
    • Generative modeling of convolutional neural networks
    • Dai, J.; Lu, Y.; and Wu, Y. N. 2015. Generative modeling of convolutional neural networks. In ICLR.
    • (2015) ICLR.
    • Dai, J.1    Lu, Y.2    Wu, Y.N.3
  • 2
    • 0031120321 scopus 로고    scopus 로고
    • Inducing features of random fields
    • Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. Inducing features of random fields. PAMI 19(4):380-393.
    • (1997) PAMI , vol.19 , Issue.4 , pp. 380-393
    • Della Pietra, S.1    Della Pietra, V.2    Lafferty, J.3
  • 4
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • IEEE
    • Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei- Fei, L. 2009. Imagenet: A large-scale hierarchical image database. In CVPR, 248-255. IEEE.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 6
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015. Learning to generate chairs with convolutional neural networks. In CVPR.
    • (2015) CVPR.
    • Dosovitskiy, E.1    Springenberg, J.T.2    Brox, T.3
  • 10
    • 33748852900 scopus 로고    scopus 로고
    • Unsupervised discovery of nonlinear structure using contrastive backpropagation
    • Hinton, G.; Osindero, S.;Welling, M.; and Teh, Y.-W. 2006. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive science 30(4):725-731.
    • (2006) Cognitive Science , vol.30 , Issue.4 , pp. 725-731
    • Hinton, G.1    Osindero, S.2    Welling, M.3    Teh, Y.-W.4
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. 2002. Training products of experts by minimizing contrastive divergence. Neural Computation 14(8):1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 12
    • 84923913871 scopus 로고    scopus 로고
    • Unsupervised learning of compositional sparse code for natural image representation
    • Hong, Y.; Si, Z.; Hu, W.; Zhu, S.; and Wu, Y. 2014. Unsupervised learning of compositional sparse code for natural image representation. Quarterly of Applied Mathematics 79:373-406.
    • (2014) Quarterly of Applied Mathematics , vol.79 , pp. 373-406
    • Hong, Y.1    Si, Z.2    Hu, W.3    Zhu, S.4    Wu, Y.5
  • 14
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Kingma, D. P., and Welling, M. 2014. Auto-encoding variational bayes. ICLR.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, 1097-1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 20
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic back propagation and approximate inference in deep generative models
    • Jebara, T. and Xing, E. P. eds., JMLR Workshop and Conference Proceedings
    • Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In Jebara, T., and Xing, E. P., eds., ICML, 1278-1286. JMLR Workshop and Conference Proceedings.
    • (2014) ICML , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 21
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., and Zisserman, A. 2015. Very deep convolutional networks for large-scale image recognition. ICLR.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 22
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2015. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR.
    • (2015) ICLR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 23
    • 84937118999 scopus 로고    scopus 로고
    • Matconvnet - convolutional neural networks for matlab
    • abs/1412.4564
    • Vedaldi, A., and Lenc, K. 2014. Matconvnet - convolutional neural networks for matlab. CoRR abs/1412.4564.
    • (2014) CoRR
    • Vedaldi, A.1    Lenc, K.2
  • 24
    • 79951911492 scopus 로고    scopus 로고
    • Learning active basis model for object detection and recognitio
    • Wu, Y. N.; Si, Z.; Gong, H.; and Zhu, S.-C. 2010. Learning active basis model for object detection and recognitio. IJCV 90:198-235.
    • (2010) IJCV , vol.90 , pp. 198-235
    • Wu, Y.N.1    Si, Z.2    Gong, H.3    Zhu, S.-C.4
  • 25
    • 0034223951 scopus 로고    scopus 로고
    • Equivalence of julesz ensembles and frame models
    • Wu, Y. N.; Zhu, S.-C.; and Liu, X. 2000. Equivalence of julesz ensembles and frame models. IJCV 38:247-265.
    • (2000) IJCV , vol.38 , pp. 247-265
    • Wu, Y.N.1    Zhu, S.-C.2    Liu, X.3
  • 26
    • 84939568551 scopus 로고    scopus 로고
    • Learning sparse frame models for natural image patterns
    • Xie, J.; Hu, W.; Zhu, S.-C.; and Wu, Y. N. 2015a. Learning sparse frame models for natural image patterns. IJCV 114:91-112.
    • (2015) IJCV , vol.114 , pp. 91-112
    • Xie, J.1    Hu, W.2    Zhu, S.-C.3    Wu, Y.N.4
  • 28
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • Younes, L. 1999. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes 65(3-4):177-228.
    • (1999) Stochastics: An International Journal of Probability and Stochastic Processes , vol.65 , Issue.3-4 , pp. 177-228
    • Younes, L.1
  • 29
    • 84937902251 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional neural networks
    • Zeiler, M. D., and Fergus, R. 2014. Visualizing and understanding convolutional neural networks. ECCV.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 30
    • 0032316524 scopus 로고    scopus 로고
    • Grade: Gibbs reaction and diffusion equations
    • Zhu, S., and Mumford, D. 1998. Grade: Gibbs reaction and diffusion equations. In ICCV.
    • (1998) ICCV.
    • Zhu, S.1    Mumford, D.2
  • 32
    • 0034205013 scopus 로고    scopus 로고
    • Exploring texture ensembles by efficient markov chain monte carlo - Towards a'trichromacy' theory of texture
    • Zhu, S. C.; Liu, X.; and Wu, Y. N. 2000. Exploring texture ensembles by efficient markov chain monte carlo - Towards a'trichromacy' theory of texture. PAMI 22:245-261.
    • (2000) PAMI , vol.22 , pp. 245-261
    • Zhu, S.C.1    Liu, X.2    Wu, Y.N.3
  • 33
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • Zhu, S. C.;Wu, Y. N.; and Mumford, D. 1997. Minimax entropy principle and its application to texture modeling. Neural Computation 9(8):1627-1660.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.