-
1
-
-
33847641793
-
Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains
-
AIKAWA, H., KILPELÄINEN, T., SHANMUGALINGAM, N. AND ZHONG, X.: Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains. Potential Anal. 26 (2007), no. 3, 281-301.
-
(2007)
Potential Anal.
, vol.26
, Issue.3
, pp. 281-301
-
-
Aikawa, H.1
Kilpeläinen, T.2
Shanmugalingam, N.3
Zhong, X.4
-
2
-
-
0002572462
-
A unified approach to symmetrization
-
Symposia Mathematica Cambridge University Press, Cambridge
-
BAERNSTEIN, A. II: A unified approach to symmetrization. In Partial differential equations of elliptic type (Cortona, 1992), 47-91. Symposia Mathematica 35, Cambridge University Press, Cambridge, 1994.
-
(1994)
Partial Differential Equations of Elliptic Type (Cortona, 1992)
, vol.35
, pp. 47-91
-
-
Baernstein, A.1
-
3
-
-
84861004575
-
Non-local gradient dependent operators
-
BJORLAND, C., CAFFARELLI, L. AND FIGALLI, A.: Non-local gradient dependent operators. Adv. Math. 230 (2012), no. 4-6, 1859-1894.
-
(2012)
Adv. Math.
, vol.230
, Issue.4-6
, pp. 1859-1894
-
-
Bjorland, C.1
Caffarelli, L.2
Figalli, A.3
-
4
-
-
84894039977
-
Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates
-
CABRÉ, X. AND SIRE, Y.: Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53.
-
(2014)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.31
, Issue.1
, pp. 23-53
-
-
Cabré, X.1
Sire, Y.2
-
5
-
-
68049121967
-
Regularity theory for fully nonlinear integrodifferential equations
-
CAFFARELLI, L. AND SILVESTRE, L.: Regularity theory for fully nonlinear integrodifferential equations. Comm. Pure Appl. Math. 62 (2009), no. 5, 597-638.
-
(2009)
Comm. Pure Appl. Math.
, vol.62
, Issue.5
, pp. 597-638
-
-
Caffarelli, L.1
Silvestre, L.2
-
6
-
-
79952706153
-
Regularity results for nonlocal equations by approximation
-
CAFFARELLI, L. AND SILVESTRE, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200 (2011), no. 1, 59-88.
-
(2011)
Arch. Ration. Mech. Anal.
, vol.200
, Issue.1
, pp. 59-88
-
-
Caffarelli, L.1
Silvestre, L.2
-
7
-
-
84930370792
-
Local behavior of fractional p-minimizers
-
DI CASTRO, A., KUUSI, T. AND PALATUCCI, G.: Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 5, 1279-1299.
-
(2016)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.33
, Issue.5
, pp. 1279-1299
-
-
Di Castro, A.1
Kuusi, T.2
Palatucci, G.3
-
8
-
-
84904957550
-
Nonlocal Harnack inequalities
-
DI CASTRO, A., KUUSI, T. AND PALATUCCI, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267 (2014), no. 6, 1807-1836.
-
(2014)
J. Funct. Anal.
, vol.267
, Issue.6
, pp. 1807-1836
-
-
Di Castro, A.1
Kuusi, T.2
Palatucci, G.3
-
9
-
-
84863469913
-
Hitchhiker's guide to the fractional Sobolev spaces
-
DI NEZZA, E., PALATUCCI, G. AND VALDINOCI, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521-573.
-
(2012)
Bull. Sci. Math.
, vol.136
, Issue.5
, pp. 521-573
-
-
Di Nezza, E.1
Palatucci, G.2
Valdinoci, E.3
-
10
-
-
84964692143
-
Existence results for fractional p-Laplacian problems via Morse theory
-
IANNIZZOTTO, A., LIU, S., PERERA, K. AND SQUASSINA, M.: Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var. 9 (2016), no. 2, 101-125.
-
(2016)
Adv. Calc. Var.
, vol.9
, Issue.2
, pp. 101-125
-
-
Iannizzotto, A.1
Liu, S.2
Perera, K.3
Squassina, M.4
-
12
-
-
84958773803
-
A note on global regularity for the weak solutions of fractional p-Laplacian equations
-
IANNIZZOTTO, A., MOSCONI, S. AND SQUASSINA, M.:, A note on global regularity for the weak solutions of fractional p-Laplacian equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), no. 1, 15-24.
-
(2016)
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.
, vol.27
, Issue.1
, pp. 15-24
-
-
Iannizzotto, A.1
Mosconi, S.2
Squassina, M.3
-
13
-
-
0002296910
-
Boundedly inhomogeneous elliptic and parabolic equations in a domain
-
KRYLOV, N. V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75-108.
-
(1983)
Izv. Akad. Nauk SSSR Ser. Mat.
, vol.47
, Issue.1
, pp. 75-108
-
-
Krylov, N.V.1
-
14
-
-
84928738414
-
Nonlocal equations with measure data
-
KUUSI, T., MINGIONE, G. AND SIRE, Y.: Nonlocal equations with measure data. Comm. Math. Phys. 337 (2015), no. 3, 1317-1368.
-
(2015)
Comm. Math. Phys.
, vol.337
, Issue.3
, pp. 1317-1368
-
-
Kuusi, T.1
Mingione, G.2
Sire, Y.3
-
15
-
-
84988358251
-
Hölder estimates for viscosity solutions of equations of fractional p-Laplace type
-
LINDGREN, E.: Hölder estimates for viscosity solutions of equations of fractional p-Laplace type. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 5, 23-55.
-
(2016)
NoDEA Nonlinear Differential Equations Appl.
, vol.23
, Issue.5
, pp. 23-55
-
-
Lindgren, E.1
-
17
-
-
1142288658
-
A new approach to Sobolev spaces and connections to Γ-convergence
-
PONCE, A.: A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Partial Differential Equations 19 (2004), no. 3, 229-255.
-
(2004)
Calc. Var. Partial Differential Equations
, vol.19
, Issue.3
, pp. 229-255
-
-
Ponce, A.1
-
18
-
-
84894498072
-
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary
-
ROS-OTON, X. AND SERRA, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101 (2014), no. 3, 275-302.
-
(2014)
J. Math. Pures Appl. (9)
, vol.101
, Issue.3
, pp. 275-302
-
-
Ros-Oton, X.1
Serra, J.2
-
19
-
-
84962225696
-
Boundary regularity for fully nonlinear integrodifferential equations
-
ROS-OTON, X. AND SERRA, J.: Boundary regularity for fully nonlinear integrodifferential equations. Duke Math. J. 165 (2016), no. 11, 2079-2154.
-
(2016)
Duke Math. J.
, vol.165
, Issue.11
, pp. 2079-2154
-
-
Ros-Oton, X.1
Serra, J.2
-
20
-
-
33747032243
-
Hölder estimates for solutions of integro-differential equations like the fractional Laplace
-
SILVESTRE, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55 (2006), no. 3, 1155-1174.
-
(2006)
Indiana Univ. Math. J.
, vol.55
, Issue.3
, pp. 1155-1174
-
-
Silvestre, L.1
-
21
-
-
84939473674
-
Regularity for fully nonlinear nonlocal parabolic equations with rough kernels
-
SERRA, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differential Equations 54 (2015), no. 1, 615-629.
-
(2015)
Calc. Var. Partial Differential Equations
, vol.54
, Issue.1
, pp. 615-629
-
-
Serra, J.1
-
22
-
-
84904974819
-
On the spectrum of two different fractional operators
-
SERVADEI, R. AND VALDINOCI, E.: On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sec. A 144 (2014), no. 4, 831-855.
-
(2014)
Proc. Roy. Soc. Edinburgh Sec. A
, vol.144
, Issue.4
, pp. 831-855
-
-
Servadei, R.1
Valdinoci, E.2
|