메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Immediate and long-term effects of 2016 Zika Outbreak: A Twitter-based study

Author keywords

Hierarchical Clustering; Immediate effects; Long term effects; Twitter; Zika Outbreak

Indexed keywords

DATA MINING; VIRUSES;

EID: 85006340272     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/HealthCom.2016.7749496     Document Type: Conference Paper
Times cited : (21)

References (21)
  • 2
    • 84962424457 scopus 로고    scopus 로고
    • Assessing Ebola-related web search behavior: Insights and implications from an analytical study of Google Trends-based query volumes
    • Alicino, C., Bragazzi, N. L., Faccio, V., Amicizia, D., Panatto, D., Gasparini, R., Icardi, G., & Orsi, A. (2015). Assessing Ebola-related web search behavior: insights and implications from an analytical study of Google Trends-based query volumes. Infectious diseases of poverty, 4(1), 1.
    • (2015) Infectious Diseases of Poverty , vol.4 , Issue.1 , pp. 1
    • Alicino, C.1    Bragazzi, N.L.2    Faccio, V.3    Amicizia, D.4    Panatto, D.5    Gasparini, R.6    Icardi, G.7    Orsi, A.8
  • 3
    • 79957985746 scopus 로고    scopus 로고
    • Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance
    • Chan, E. H., Sahai, V., Conrad, C., & Brownstein, J. S. (2011). Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis, 5(5), e1206.
    • (2011) PLoS Negl Trop Dis , vol.5 , Issue.5
    • Chan, E.H.1    Sahai, V.2    Conrad, C.3    Brownstein, J.S.4
  • 4
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak
    • Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PloS one, 5(11), e14118.
    • (2010) PloS One , vol.5 , Issue.11
    • Chew, C.1    Eysenbach, G.2
  • 5
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing Twitter messages
    • July ACM
    • Culotta, A. (2010, July). Towards detecting influenza epidemics by analyzing Twitter messages. In Proceedings of the first workshop on social media analytics (pp. 115-122). ACM.
    • (2010) Proceedings of the First Workshop on Social Media Analytics , pp. 115-122
    • Culotta, A.1
  • 6
    • 84963036437 scopus 로고
    • On the cophenetic correlation coefficient
    • Farris, J. S. (1969). On the cophenetic correlation coefficient. Systematic Biology, 18(3), 279-285.
    • (1969) Systematic Biology , vol.18 , Issue.3 , pp. 279-285
    • Farris, J.S.1
  • 8
    • 84859565382 scopus 로고    scopus 로고
    • Epidemic outbreak and spread detection system based on twitter data
    • Springer Berlin Heidelberg. April
    • Ji, X., Chun, S. A., & Geller, J. (2012, April). Epidemic outbreak and spread detection system based on twitter data. In International Conference on Health Information Science (pp. 152-163). Springer Berlin Heidelberg.
    • (2012) International Conference on Health Information Science , pp. 152-163
    • Ji, X.1    Chun, S.A.2    Geller, J.3
  • 12
    • 84942981452 scopus 로고    scopus 로고
    • Detecting themes of public concern: A text mining analysis of the centers for disease control and prevention's ebola live twitter chat
    • Lazard, A. J., Scheinfeld, E., Bernhardt, J. M., Wilcox, G. B., & Suran, M. (2015). Detecting themes of public concern: A text mining analysis of the Centers for Disease Control and Prevention's Ebola live Twitter chat. American journal of infection control, 43(10), 1109-1111.
    • (2015) American Journal of Infection Control , vol.43 , Issue.10 , pp. 1109-1111
    • Lazard, A.J.1    Scheinfeld, E.2    Bernhardt, J.M.3    Wilcox, G.B.4    Suran, M.5
  • 13
    • 84896056107 scopus 로고    scopus 로고
    • The parable of google flu: Traps in big data analysis
    • Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: traps in big data analysis. Science, 343(6176), 1203-1205.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 15
    • 84931022706 scopus 로고    scopus 로고
    • What can we learn about the Ebola outbreak from tweets?
    • Odlum, M., & Yoon, S. (2015). What can we learn about the Ebola outbreak from tweets?. American journal of infection control, 43(6), 563-571.
    • (2015) American Journal of Infection Control , vol.43 , Issue.6 , pp. 563-571
    • Odlum, M.1    Yoon, S.2
  • 16
    • 84893343857 scopus 로고    scopus 로고
    • Comparison of hierarchical cluster analysis methods by cophenetic correlation
    • Saraçli, S., Doǧan, N., & Doǧan, I. (2013). Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1), 1-8.
    • (2013) Journal of Inequalities and Applications , vol.2013 , Issue.1 , pp. 1-8
    • Saraçli, S.1    Doǧan, N.2    Doǧan, I.3
  • 17
    • 0002471149 scopus 로고
    • The comparison of dendrograms by objective methods
    • Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 33-40.
    • (1962) Taxon , pp. 33-40
    • Sokal, R.R.1    Rohlf, F.J.2
  • 18
    • 84947476425 scopus 로고    scopus 로고
    • Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering
    • Tal Galili (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics, btv428
    • (2015) Bioinformatics , pp. btv428
    • Galili, T.1
  • 19
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 21
    • 84945936407 scopus 로고    scopus 로고
    • Ebola data from the Internet: An opportunity for syndromic surveillance or a news event?
    • ACM. May
    • Yom-Tov, E. (2015, May). Ebola data from the Internet: An opportunity for syndromic surveillance or a news event?. In Proceedings of the 5th International Conference on Digital Health 2015 (pp. 115-119). ACM.
    • (2015) Proceedings of the 5th International Conference on Digital Health 2015 , pp. 115-119
    • Yom-Tov, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.