메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85006043237     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep38798     Document Type: Article
Times cited : (47)

References (51)
  • 1
    • 34547578774 scopus 로고    scopus 로고
    • A micro electromagnetic generator for vibration energy harvesting
    • Beeby, S. P. et al. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17, 1257-1265 (2007).
    • (2007) J. Micromech. Microeng , vol.17 , pp. 1257-1265
    • Beeby, S.P.1
  • 2
    • 84884563147 scopus 로고    scopus 로고
    • Analysis of compliance effects on power generation of a nonlinear electromagnetic energy harvesting unit: Theory and experiment
    • Chen, Y., Pollock, T. E. & Salehian, A. Analysis of compliance effects on power generation of a nonlinear electromagnetic energy harvesting unit: theory and experiment. Smart Mater. Struct. 22, 094027 (2013).
    • (2013) Smart Mater. Struct , vol.22 , pp. 094027
    • Chen, Y.1    Pollock, T.E.2    Salehian, A.3
  • 3
    • 44849122933 scopus 로고    scopus 로고
    • An electromagnetic micro power generator for wideband environmental vibrations
    • Sari, I., Balkan, T. & Kulah, H. An electromagnetic micro power generator for wideband environmental vibrations. Sens. Actuators A. 145, 405-413 (2008).
    • (2008) Sens. Actuators A , vol.145 , pp. 405-413
    • Sari, I.1    Balkan, T.2    Kulah, H.3
  • 4
    • 84861740562 scopus 로고    scopus 로고
    • A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance
    • Bai, X. L. et al. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 111, 07A938 (2012).
    • (2012) J. Appl. Phys , vol.111 , pp. 07A938
    • Bai, X.L.1
  • 5
    • 1642525648 scopus 로고    scopus 로고
    • An electromagnetic vibration-powered generator for intelligent sensor systems
    • Glynne-Jones, P., Tudor, M. J., Beeby, S. P. & White, N. M. An electromagnetic vibration-powered generator for intelligent sensor systems. Sens. Actuators A 110, 344-349 (2004).
    • (2004) Sens. Actuators A , vol.110 , pp. 344-349
    • Glynne-Jones, P.1    Tudor, M.J.2    Beeby, S.P.3    White, N.M.4
  • 6
    • 78650892172 scopus 로고    scopus 로고
    • A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations
    • Yang, B., Lee, C., Kotlanka, R. K., Xie, J. & Lim, S. P. A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J. Micromech. Microeng. 20, 065017 (2010).
    • (2010) J. Micromech. Microeng , vol.20 , pp. 065017
    • Yang, B.1    Lee, C.2    Kotlanka, R.K.3    Xie, J.4    Lim, S.P.5
  • 7
    • 84862300076 scopus 로고    scopus 로고
    • Functional electrical stimulation by nanogenerator with 58 v output voltage
    • Zhu, G., Wang, A. C., Liu, Y., Zhou, Y. & Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12, 3086-3092 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3086-3092
    • Zhu, G.1    Wang, A.C.2    Liu, Y.3    Zhou, Y.4    Wang, Z.L.5
  • 8
    • 0034783942 scopus 로고    scopus 로고
    • Dielectric elastomers: Generator mode fundamentals and applications
    • Pelrine, R. et al. Dielectric elastomers: generator mode fundamentals and applications. Proc. SPIE 4329, 148-156 (2001).
    • (2001) Proc. SPIE , vol.4329 , pp. 148-156
    • Pelrine, R.1
  • 9
    • 33747588746 scopus 로고    scopus 로고
    • MEMS inertial power generators for biomedical applications
    • Miao, P. et al. MEMS inertial power generators for biomedical applications. Microsyst. Technol. 12, 1079-1083 (2006).
    • (2006) Microsyst. Technol , vol.12 , pp. 1079-1083
    • Miao, P.1
  • 10
    • 84900013674 scopus 로고    scopus 로고
    • Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
    • Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818-2824 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 2818-2824
    • Wang, S.1    Xie, Y.2    Niu, S.3    Lin, L.4    Wang, Z.L.5
  • 11
    • 84879092885 scopus 로고    scopus 로고
    • Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
    • Lin, L. et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916-2923 (2013).
    • (2013) Nano Lett , vol.13 , pp. 2916-2923
    • Lin, L.1
  • 12
    • 84946491060 scopus 로고    scopus 로고
    • Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to addplications
    • Zhu, G., Peng, B., Chen, J., Jing, Q. & Wang, Z. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to addplications. Nano Energy 14, 126-138 (2015).
    • (2015) Nano Energy , vol.14 , pp. 126-138
    • Zhu, G.1    Peng, B.2    Chen, J.3    Jing, Q.4    Wang, Z.5
  • 13
    • 84880804971 scopus 로고    scopus 로고
    • Cylindrical rotating triboelectric nanogenerator
    • Bai, P. et al. Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361-6366 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6361-6366
    • Bai, P.1
  • 14
    • 84980000120 scopus 로고    scopus 로고
    • In Vivo Self-Powered Wireless Cardiac Monitoring Via Implantable Triboelectric Nanogenerator
    • Zheng, Q. et al. In Vivo Self-Powered Wireless Cardiac Monitoring Via Implantable Triboelectric Nanogenerator. ACS Nano. 10, 6510-6518 (2016).
    • (2016) ACS Nano , vol.10 , pp. 6510-6518
    • Zheng, Q.1
  • 15
    • 84920140682 scopus 로고    scopus 로고
    • Wearable electrode-free triboelectric generator for harvesting biomechanical energy
    • Cheng et al. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy. 12, 19-25 (2015).
    • (2015) Nano Energy , vol.12 , pp. 19-25
    • Cheng1
  • 16
    • 84900797629 scopus 로고    scopus 로고
    • Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-cotrifluoroethylene) (PVDF-TrFE) thin film
    • Pi, Z., Zhang, J., Wen, C., Zhang, Z. & Wu, D. Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-cotrifluoroethylene) (PVDF-TrFE) thin film. Nano Energy. 7, 33-41 (2014).
    • (2014) Nano Energy , vol.7 , pp. 33-41
    • Pi, Z.1    Zhang, J.2    Wen, C.3    Zhang, Z.4    Wu, D.5
  • 17
    • 84959441162 scopus 로고    scopus 로고
    • A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices
    • Zhu, Y. B. et al. A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep. 6, 22233 (2016).
    • (2016) Sci. Rep , vol.6 , pp. 22233
    • Zhu, Y.B.1
  • 18
    • 78049346668 scopus 로고    scopus 로고
    • Modeling and characterization of MEMS-based piezoelectric harvesting devices
    • Kamal, T. M. et al. Modeling and characterization of MEMS-based piezoelectric harvesting devices. J. Micromech. Microeng. 20, 105023 (2010).
    • (2010) J. Micromech. Microeng , vol.20 , pp. 105023
    • Kamal, T.M.1
  • 19
    • 77957588625 scopus 로고    scopus 로고
    • Modeling and characterization of piezoelectric d33-mode MEMS energy harvester
    • Park, J. C., Park, J. Y. & Lee, Y. P. Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J. Microelectromech. 19, 1215-1222 (2010).
    • (2010) J. Microelectromech , vol.19 , pp. 1215-1222
    • Park, J.C.1    Park, J.Y.2    Lee, Y.P.3
  • 20
    • 39149112201 scopus 로고    scopus 로고
    • Microfibre-nanowire hybrid structure for energy scavenging
    • Qin, Y., Wang, X. & Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809-813 (2008).
    • (2008) Nature , vol.451 , pp. 809-813
    • Qin, Y.1    Wang, X.2    Wang, Z.L.3
  • 21
    • 70349972972 scopus 로고    scopus 로고
    • Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
    • Lee, B. S. et al. Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Microeng. 19, 065014 (2009).
    • (2009) J. Micromech. Microeng , vol.19 , pp. 065014
    • Lee, B.S.1
  • 22
    • 0035280917 scopus 로고    scopus 로고
    • Performance of hydrothermal PZT film on high intensity operation
    • Kanda, T., Kurosawab, M. K., Yasui, s. H. & Higuchi, T. Performance of hydrothermal PZT film on high intensity operation. Sens. Actuators A 89, 16-21 (2001).
    • (2001) Sens. Actuators A , vol.89 , pp. 16-21
    • Kanda, T.1    Kurosawab, M.K.2    Yasui, S.H.3    Higuchi, T.4
  • 23
    • 0000005030 scopus 로고    scopus 로고
    • Processing of PZT piezoelectric thick films on silicon for micro electromechanical systems
    • Beeby, S. B., Blcakburn, A. & White, N. M. Processing of PZT piezoelectric thick films on silicon for micro electromechanical systems. J. Micromech. Microeng. 9, 218-229 (1999).
    • (1999) J. Micromech. Microeng , vol.9 , pp. 218-229
    • Beeby, S.B.1    Blcakburn, A.2    White, N.M.3
  • 24
    • 41349116956 scopus 로고    scopus 로고
    • A micrometer scale and low temperature PZT thick film MEMS process utilizing an aerosol deposition method
    • Wang, X. Y., Lee, C. Y., Peng, C. J., Chen, P. Y. & Chang, P. Z. A micrometer scale and low temperature PZT thick film MEMS process utilizing an aerosol deposition method. Sens. Actuators A 143, 469-474 (2008).
    • (2008) Sens. Actuators A , vol.143 , pp. 469-474
    • Wang, X.Y.1    Lee, C.Y.2    Peng, C.J.3    Chen, P.Y.4    Chang, P.Z.5
  • 25
    • 77954275027 scopus 로고    scopus 로고
    • Muscle-driven in vivo nanogenerator
    • Li, Z., Zhu, G., Yang, R., Wang, A. C. & Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534-2537 (2010).
    • (2010) Adv. Mater , vol.22 , pp. 2534-2537
    • Li, Z.1    Zhu, G.2    Yang, R.3    Wang, A.C.4    Wang, Z.L.5
  • 26
    • 84956678452 scopus 로고    scopus 로고
    • A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators
    • Shi, B. et al. A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators. Adv. Mater. 28, 846-852 (2016).
    • (2016) Adv. Mater , vol.28 , pp. 846-852
    • Shi, B.1
  • 27
    • 84964584112 scopus 로고    scopus 로고
    • MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices
    • Shi, Q., Wang, T. & Lee, C. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices. Sci. Rep. 6, 24946 (2016).
    • (2016) Sci. Rep , vol.6 , pp. 24946
    • Shi, Q.1    Wang, T.2    Lee, C.3
  • 28
    • 84969514544 scopus 로고    scopus 로고
    • Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting
    • Shi, Q., Wang, T., Kobayashi, T. & Lee, C. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting. Appl. Phys. Lett. 108, 193902 (2016).
    • (2016) Appl. Phys. Lett , vol.108 , pp. 193902
    • Shi, Q.1    Wang, T.2    Kobayashi, T.3    Lee, C.4
  • 29
    • 84899747432 scopus 로고    scopus 로고
    • Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb (Zr0.52 Ti0.48) O3 microcantilever
    • Liu, H., Zhang, S., Kobayashi, T., Chen, T. & Lee, C. Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb (Zr0.52, Ti0.48) O3 microcantilever. Micro & Nano Lett. 9, 286-289 (2014).
    • (2014) Micro & Nano Lett , vol.9 , pp. 286-289
    • Liu, H.1    Zhang, S.2    Kobayashi, T.3    Chen, T.4    Lee, C.5
  • 30
    • 84862141483 scopus 로고    scopus 로고
    • Development of piezoelectric micro cantilever flow sensor with winddriven energy harvesting capability
    • Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T. & Lee, C. Development of piezoelectric micro cantilever flow sensor with winddriven energy harvesting capability. Appl. Phys. Lett. 100, 223905 (2012).
    • (2012) Appl. Phys. Lett , vol.100 , pp. 223905
    • Liu, H.1    Zhang, S.2    Kathiresan, R.3    Kobayashi, T.4    Lee, C.5
  • 31
    • 84880299484 scopus 로고    scopus 로고
    • A new energy harvester design for high power output at low frequencies
    • Dhakar, L., Liu, H., Tay, F. E. H. & Lee, C. A new energy harvester design for high power output at low frequencies. Sens. Actuators A 199, 344-352 (2013).
    • (2013) Sens. Actuators A , vol.199 , pp. 344-352
    • Dhakar, L.1    Liu, H.2    Tay, F.E.H.3    Lee, C.4
  • 32
    • 84867332079 scopus 로고    scopus 로고
    • Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper
    • Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens. Actuators A 186, 242-248 (2012).
    • (2012) Sens. Actuators A , vol.186 , pp. 242-248
    • Liu, H.1    Lee, C.2    Kobayashi, T.3    Tay, C.J.4    Quan, C.5
  • 33
    • 84863230318 scopus 로고    scopus 로고
    • Investigation of a MEMS piezoelectric energy harvester system with a frequencywidened- bandwidth mechanism introduced by mechanical stoppers
    • Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. Investigation of a MEMS piezoelectric energy harvester system with a frequencywidened- bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21, 035005 (2012).
    • (2012) Smart Mater. Struct , vol.21 , pp. 035005
    • Liu, H.1    Lee, C.2    Kobayashi, T.3    Tay, C.J.4    Quan, C.5
  • 34
    • 84855716576 scopus 로고    scopus 로고
    • A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
    • Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst. Technol. 17, 1747-1754 (2011).
    • (2011) Microsyst. Technol , vol.17 , pp. 1747-1754
    • Liu, H.1    Tay, C.J.2    Quan, C.3    Kobayashi, T.4    Lee, C.5
  • 35
    • 33645063708 scopus 로고    scopus 로고
    • Wafer bonding of lead zircon tetitanate to Si using an intermediate gold layer for micro device application
    • Tanaka, K., Konishi, T., Ide, M. & Sugiyama, S. Wafer bonding of lead zircon tetitanate to Si using an intermediate gold layer for micro device application. J. Micromech. Microeng. 16, 815 (2006).
    • (2006) J. Micromech. Microeng , vol.16 , pp. 815
    • Tanaka, K.1    Konishi, T.2    Ide, M.3    Sugiyama, S.4
  • 36
    • 80052112891 scopus 로고    scopus 로고
    • Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting
    • Aktakka, E. E., Peterson, R. L. & Najafi, K. Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Transducer's 11, 1649-1652 (2011).
    • (2011) Transducer's , vol.11 , pp. 1649-1652
    • Aktakka, E.E.1    Peterson, R.L.2    Najafi, K.3
  • 37
    • 42549147460 scopus 로고    scopus 로고
    • Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS
    • Xu, X. H. & Chu, J. R. Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS. J. Micromech. Microeng. 18, 065001 (2008).
    • (2008) J. Micromech. Microeng , vol.18 , pp. 065001
    • Xu, X.H.1    Chu, J.R.2
  • 38
    • 36949030817 scopus 로고    scopus 로고
    • Fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror
    • Xu, X. H., Li, B. Q., Feng, Y. & Chu, J. R. Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror. J. Micromech. Microeng. 17, 2439 (2007).
    • (2007) J. Micromech. Microeng , vol.17 , pp. 2439
    • Xu, X.H.1    Li, B.Q.2    Feng, Y.3    Design, R.C.J.4
  • 39
    • 84861446730 scopus 로고    scopus 로고
    • Fabrication and analysis of high-performance piezoelectric MEMS generators
    • Tang, G. et al. Fabrication and analysis of high-performance piezoelectric MEMS generators. J. Micromech. Microeng. 22, 065017 (2012).
    • (2012) J. Micromech. Microeng , vol.22 , pp. 065017
    • Tang, G.1
  • 40
    • 0037502904 scopus 로고    scopus 로고
    • A study of low level vibrations as a power source for wireless sensor nodes
    • Roundy, S., Wright, P. K. & Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. J. Comput. Commun. 26, 1131-1144 (2003).
    • (2003) J. Comput. Commun , vol.26 , pp. 1131-1144
    • Roundy, S.1    Wright, P.K.2    Rabaey, J.3
  • 41
    • 80053573320 scopus 로고    scopus 로고
    • Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
    • Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Micromech. Microeng. 20, 1131-1142 (2011).
    • (2011) J. Micromech. Microeng , vol.20 , pp. 1131-1142
    • Liu, H.1    Tay, C.J.2    Quan, C.3    Kobayashi, T.4    Lee, C.5
  • 42
    • 84861496773 scopus 로고    scopus 로고
    • A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
    • Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18, 497-506 (2012).
    • (2012) Microsyst. Technol , vol.18 , pp. 497-506
    • Liu, H.1    Lee, C.2    Kobayashi, T.3    Tay, C.J.4    Quan, C.5
  • 43
    • 27144528640 scopus 로고    scopus 로고
    • On the effectiveness of vibration-based energy harvesting
    • Roundy, S. On the effectiveness of vibration-based energy harvesting. J. Intel Mat. Syst. Str. 16, 809-823 (2005).
    • (2005) J. Intel Mat. Syst. Str , vol.16 , pp. 809-823
    • Roundy, S.1
  • 44
    • 5744241231 scopus 로고    scopus 로고
    • A piezoelectric vibration based generator for wireless electronics
    • Roundy, S. & Wright, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131-1142 (2004).
    • (2004) Smart Mater. Struct , vol.13 , pp. 1131-1142
    • Roundy, S.1    Wright, P.K.2
  • 45
    • 3142697662 scopus 로고    scopus 로고
    • New thermoelectric components using microsystem technologies
    • Bottner, H. et al. New thermoelectric components using microsystem technologies. J. Microelectro. Mech. S. 13, 414-420 (2004).
    • (2004) J. Microelectro. Mech. S , vol.13 , pp. 414-420
    • Bottner, H.1
  • 46
    • 0031957098 scopus 로고    scopus 로고
    • Vibration acceleration magnitudes of hand-held tools and work pieces
    • Ikeda, K., Ishizuka, H., Sawada, A. & Urushiyama, K. Vibration acceleration magnitudes of hand-held tools and work pieces. Industrial Health 36, 197-208 (1998).
    • (1998) Industrial Health , vol.36 , pp. 197-208
    • Ikeda, K.1    Ishizuka, H.2    Sawada, A.3    Urushiyama, K.4
  • 47
    • 4944249106 scopus 로고    scopus 로고
    • Actiseat: Active vehicle seat for acceleration compensation
    • Frechin, M. M., Arino, S. B. & Fontaine, J. Actiseat: Active vehicle seat for acceleration compensation. P. I. Mech. Eng. D-J. 218, 925-933 (2004).
    • (2004) P. I. Mech. Eng. D-J. , vol.218 , pp. 925-933
    • Frechin, M.M.1    Arino, S.B.2    Fontaine, J.3
  • 48
    • 33751113307 scopus 로고    scopus 로고
    • Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting
    • Fang, H. B. et al. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. J. Microelectron. 37, 1280-1284 (2006).
    • (2006) J. Microelectron , vol.37 , pp. 1280-1284
    • Fang, H.B.1
  • 49
    • 84903444629 scopus 로고    scopus 로고
    • Fiber-based generator for earable electronics and mobile medication
    • Zhong, J. et al. Fiber-based generator for earable electronics and mobile medication. ACS Nano. 8, 6273-6280 (2014).
    • (2014) ACS Nano , vol.8 , pp. 6273-6280
    • Zhong, J.1
  • 50
    • 68849103726 scopus 로고    scopus 로고
    • Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
    • Shen, D. et al. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuators A 154, 103-108 (2009).
    • (2009) Sens. Actuators A , vol.154 , pp. 103-108
    • Shen, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.