-
1
-
-
34547578774
-
A micro electromagnetic generator for vibration energy harvesting
-
Beeby, S. P. et al. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17, 1257-1265 (2007).
-
(2007)
J. Micromech. Microeng
, vol.17
, pp. 1257-1265
-
-
Beeby, S.P.1
-
2
-
-
84884563147
-
Analysis of compliance effects on power generation of a nonlinear electromagnetic energy harvesting unit: Theory and experiment
-
Chen, Y., Pollock, T. E. & Salehian, A. Analysis of compliance effects on power generation of a nonlinear electromagnetic energy harvesting unit: theory and experiment. Smart Mater. Struct. 22, 094027 (2013).
-
(2013)
Smart Mater. Struct
, vol.22
, pp. 094027
-
-
Chen, Y.1
Pollock, T.E.2
Salehian, A.3
-
3
-
-
44849122933
-
An electromagnetic micro power generator for wideband environmental vibrations
-
Sari, I., Balkan, T. & Kulah, H. An electromagnetic micro power generator for wideband environmental vibrations. Sens. Actuators A. 145, 405-413 (2008).
-
(2008)
Sens. Actuators A
, vol.145
, pp. 405-413
-
-
Sari, I.1
Balkan, T.2
Kulah, H.3
-
4
-
-
84861740562
-
A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance
-
Bai, X. L. et al. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 111, 07A938 (2012).
-
(2012)
J. Appl. Phys
, vol.111
, pp. 07A938
-
-
Bai, X.L.1
-
5
-
-
1642525648
-
An electromagnetic vibration-powered generator for intelligent sensor systems
-
Glynne-Jones, P., Tudor, M. J., Beeby, S. P. & White, N. M. An electromagnetic vibration-powered generator for intelligent sensor systems. Sens. Actuators A 110, 344-349 (2004).
-
(2004)
Sens. Actuators A
, vol.110
, pp. 344-349
-
-
Glynne-Jones, P.1
Tudor, M.J.2
Beeby, S.P.3
White, N.M.4
-
6
-
-
78650892172
-
A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations
-
Yang, B., Lee, C., Kotlanka, R. K., Xie, J. & Lim, S. P. A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J. Micromech. Microeng. 20, 065017 (2010).
-
(2010)
J. Micromech. Microeng
, vol.20
, pp. 065017
-
-
Yang, B.1
Lee, C.2
Kotlanka, R.K.3
Xie, J.4
Lim, S.P.5
-
7
-
-
84862300076
-
Functional electrical stimulation by nanogenerator with 58 v output voltage
-
Zhu, G., Wang, A. C., Liu, Y., Zhou, Y. & Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12, 3086-3092 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 3086-3092
-
-
Zhu, G.1
Wang, A.C.2
Liu, Y.3
Zhou, Y.4
Wang, Z.L.5
-
8
-
-
0034783942
-
Dielectric elastomers: Generator mode fundamentals and applications
-
Pelrine, R. et al. Dielectric elastomers: generator mode fundamentals and applications. Proc. SPIE 4329, 148-156 (2001).
-
(2001)
Proc. SPIE
, vol.4329
, pp. 148-156
-
-
Pelrine, R.1
-
9
-
-
33747588746
-
MEMS inertial power generators for biomedical applications
-
Miao, P. et al. MEMS inertial power generators for biomedical applications. Microsyst. Technol. 12, 1079-1083 (2006).
-
(2006)
Microsyst. Technol
, vol.12
, pp. 1079-1083
-
-
Miao, P.1
-
10
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818-2824 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
11
-
-
84879092885
-
Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
-
Lin, L. et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916-2923 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 2916-2923
-
-
Lin, L.1
-
12
-
-
84946491060
-
Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to addplications
-
Zhu, G., Peng, B., Chen, J., Jing, Q. & Wang, Z. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to addplications. Nano Energy 14, 126-138 (2015).
-
(2015)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Wang, Z.5
-
13
-
-
84880804971
-
Cylindrical rotating triboelectric nanogenerator
-
Bai, P. et al. Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361-6366 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 6361-6366
-
-
Bai, P.1
-
14
-
-
84980000120
-
In Vivo Self-Powered Wireless Cardiac Monitoring Via Implantable Triboelectric Nanogenerator
-
Zheng, Q. et al. In Vivo Self-Powered Wireless Cardiac Monitoring Via Implantable Triboelectric Nanogenerator. ACS Nano. 10, 6510-6518 (2016).
-
(2016)
ACS Nano
, vol.10
, pp. 6510-6518
-
-
Zheng, Q.1
-
15
-
-
84920140682
-
Wearable electrode-free triboelectric generator for harvesting biomechanical energy
-
Cheng et al. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy. 12, 19-25 (2015).
-
(2015)
Nano Energy
, vol.12
, pp. 19-25
-
-
Cheng1
-
16
-
-
84900797629
-
Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-cotrifluoroethylene) (PVDF-TrFE) thin film
-
Pi, Z., Zhang, J., Wen, C., Zhang, Z. & Wu, D. Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-cotrifluoroethylene) (PVDF-TrFE) thin film. Nano Energy. 7, 33-41 (2014).
-
(2014)
Nano Energy
, vol.7
, pp. 33-41
-
-
Pi, Z.1
Zhang, J.2
Wen, C.3
Zhang, Z.4
Wu, D.5
-
17
-
-
84959441162
-
A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices
-
Zhu, Y. B. et al. A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep. 6, 22233 (2016).
-
(2016)
Sci. Rep
, vol.6
, pp. 22233
-
-
Zhu, Y.B.1
-
18
-
-
78049346668
-
Modeling and characterization of MEMS-based piezoelectric harvesting devices
-
Kamal, T. M. et al. Modeling and characterization of MEMS-based piezoelectric harvesting devices. J. Micromech. Microeng. 20, 105023 (2010).
-
(2010)
J. Micromech. Microeng
, vol.20
, pp. 105023
-
-
Kamal, T.M.1
-
19
-
-
77957588625
-
Modeling and characterization of piezoelectric d33-mode MEMS energy harvester
-
Park, J. C., Park, J. Y. & Lee, Y. P. Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J. Microelectromech. 19, 1215-1222 (2010).
-
(2010)
J. Microelectromech
, vol.19
, pp. 1215-1222
-
-
Park, J.C.1
Park, J.Y.2
Lee, Y.P.3
-
20
-
-
39149112201
-
Microfibre-nanowire hybrid structure for energy scavenging
-
Qin, Y., Wang, X. & Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809-813 (2008).
-
(2008)
Nature
, vol.451
, pp. 809-813
-
-
Qin, Y.1
Wang, X.2
Wang, Z.L.3
-
21
-
-
70349972972
-
Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
-
Lee, B. S. et al. Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Microeng. 19, 065014 (2009).
-
(2009)
J. Micromech. Microeng
, vol.19
, pp. 065014
-
-
Lee, B.S.1
-
22
-
-
0035280917
-
Performance of hydrothermal PZT film on high intensity operation
-
Kanda, T., Kurosawab, M. K., Yasui, s. H. & Higuchi, T. Performance of hydrothermal PZT film on high intensity operation. Sens. Actuators A 89, 16-21 (2001).
-
(2001)
Sens. Actuators A
, vol.89
, pp. 16-21
-
-
Kanda, T.1
Kurosawab, M.K.2
Yasui, S.H.3
Higuchi, T.4
-
23
-
-
0000005030
-
Processing of PZT piezoelectric thick films on silicon for micro electromechanical systems
-
Beeby, S. B., Blcakburn, A. & White, N. M. Processing of PZT piezoelectric thick films on silicon for micro electromechanical systems. J. Micromech. Microeng. 9, 218-229 (1999).
-
(1999)
J. Micromech. Microeng
, vol.9
, pp. 218-229
-
-
Beeby, S.B.1
Blcakburn, A.2
White, N.M.3
-
24
-
-
41349116956
-
A micrometer scale and low temperature PZT thick film MEMS process utilizing an aerosol deposition method
-
Wang, X. Y., Lee, C. Y., Peng, C. J., Chen, P. Y. & Chang, P. Z. A micrometer scale and low temperature PZT thick film MEMS process utilizing an aerosol deposition method. Sens. Actuators A 143, 469-474 (2008).
-
(2008)
Sens. Actuators A
, vol.143
, pp. 469-474
-
-
Wang, X.Y.1
Lee, C.Y.2
Peng, C.J.3
Chen, P.Y.4
Chang, P.Z.5
-
25
-
-
77954275027
-
Muscle-driven in vivo nanogenerator
-
Li, Z., Zhu, G., Yang, R., Wang, A. C. & Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534-2537 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. 2534-2537
-
-
Li, Z.1
Zhu, G.2
Yang, R.3
Wang, A.C.4
Wang, Z.L.5
-
26
-
-
84956678452
-
A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators
-
Shi, B. et al. A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators. Adv. Mater. 28, 846-852 (2016).
-
(2016)
Adv. Mater
, vol.28
, pp. 846-852
-
-
Shi, B.1
-
27
-
-
84964584112
-
MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices
-
Shi, Q., Wang, T. & Lee, C. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices. Sci. Rep. 6, 24946 (2016).
-
(2016)
Sci. Rep
, vol.6
, pp. 24946
-
-
Shi, Q.1
Wang, T.2
Lee, C.3
-
28
-
-
84969514544
-
Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting
-
Shi, Q., Wang, T., Kobayashi, T. & Lee, C. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting. Appl. Phys. Lett. 108, 193902 (2016).
-
(2016)
Appl. Phys. Lett
, vol.108
, pp. 193902
-
-
Shi, Q.1
Wang, T.2
Kobayashi, T.3
Lee, C.4
-
29
-
-
84899747432
-
Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb (Zr0.52 Ti0.48) O3 microcantilever
-
Liu, H., Zhang, S., Kobayashi, T., Chen, T. & Lee, C. Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb (Zr0.52, Ti0.48) O3 microcantilever. Micro & Nano Lett. 9, 286-289 (2014).
-
(2014)
Micro & Nano Lett
, vol.9
, pp. 286-289
-
-
Liu, H.1
Zhang, S.2
Kobayashi, T.3
Chen, T.4
Lee, C.5
-
30
-
-
84862141483
-
Development of piezoelectric micro cantilever flow sensor with winddriven energy harvesting capability
-
Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T. & Lee, C. Development of piezoelectric micro cantilever flow sensor with winddriven energy harvesting capability. Appl. Phys. Lett. 100, 223905 (2012).
-
(2012)
Appl. Phys. Lett
, vol.100
, pp. 223905
-
-
Liu, H.1
Zhang, S.2
Kathiresan, R.3
Kobayashi, T.4
Lee, C.5
-
31
-
-
84880299484
-
A new energy harvester design for high power output at low frequencies
-
Dhakar, L., Liu, H., Tay, F. E. H. & Lee, C. A new energy harvester design for high power output at low frequencies. Sens. Actuators A 199, 344-352 (2013).
-
(2013)
Sens. Actuators A
, vol.199
, pp. 344-352
-
-
Dhakar, L.1
Liu, H.2
Tay, F.E.H.3
Lee, C.4
-
32
-
-
84867332079
-
Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper
-
Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens. Actuators A 186, 242-248 (2012).
-
(2012)
Sens. Actuators A
, vol.186
, pp. 242-248
-
-
Liu, H.1
Lee, C.2
Kobayashi, T.3
Tay, C.J.4
Quan, C.5
-
33
-
-
84863230318
-
Investigation of a MEMS piezoelectric energy harvester system with a frequencywidened- bandwidth mechanism introduced by mechanical stoppers
-
Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. Investigation of a MEMS piezoelectric energy harvester system with a frequencywidened- bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21, 035005 (2012).
-
(2012)
Smart Mater. Struct
, vol.21
, pp. 035005
-
-
Liu, H.1
Lee, C.2
Kobayashi, T.3
Tay, C.J.4
Quan, C.5
-
34
-
-
84855716576
-
A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors
-
Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsyst. Technol. 17, 1747-1754 (2011).
-
(2011)
Microsyst. Technol
, vol.17
, pp. 1747-1754
-
-
Liu, H.1
Tay, C.J.2
Quan, C.3
Kobayashi, T.4
Lee, C.5
-
35
-
-
33645063708
-
Wafer bonding of lead zircon tetitanate to Si using an intermediate gold layer for micro device application
-
Tanaka, K., Konishi, T., Ide, M. & Sugiyama, S. Wafer bonding of lead zircon tetitanate to Si using an intermediate gold layer for micro device application. J. Micromech. Microeng. 16, 815 (2006).
-
(2006)
J. Micromech. Microeng
, vol.16
, pp. 815
-
-
Tanaka, K.1
Konishi, T.2
Ide, M.3
Sugiyama, S.4
-
36
-
-
80052112891
-
Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting
-
Aktakka, E. E., Peterson, R. L. & Najafi, K. Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Transducer's 11, 1649-1652 (2011).
-
(2011)
Transducer's
, vol.11
, pp. 1649-1652
-
-
Aktakka, E.E.1
Peterson, R.L.2
Najafi, K.3
-
37
-
-
42549147460
-
Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS
-
Xu, X. H. & Chu, J. R. Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS. J. Micromech. Microeng. 18, 065001 (2008).
-
(2008)
J. Micromech. Microeng
, vol.18
, pp. 065001
-
-
Xu, X.H.1
Chu, J.R.2
-
38
-
-
36949030817
-
Fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror
-
Xu, X. H., Li, B. Q., Feng, Y. & Chu, J. R. Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror. J. Micromech. Microeng. 17, 2439 (2007).
-
(2007)
J. Micromech. Microeng
, vol.17
, pp. 2439
-
-
Xu, X.H.1
Li, B.Q.2
Feng, Y.3
Design, R.C.J.4
-
39
-
-
84861446730
-
Fabrication and analysis of high-performance piezoelectric MEMS generators
-
Tang, G. et al. Fabrication and analysis of high-performance piezoelectric MEMS generators. J. Micromech. Microeng. 22, 065017 (2012).
-
(2012)
J. Micromech. Microeng
, vol.22
, pp. 065017
-
-
Tang, G.1
-
40
-
-
0037502904
-
A study of low level vibrations as a power source for wireless sensor nodes
-
Roundy, S., Wright, P. K. & Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. J. Comput. Commun. 26, 1131-1144 (2003).
-
(2003)
J. Comput. Commun
, vol.26
, pp. 1131-1144
-
-
Roundy, S.1
Wright, P.K.2
Rabaey, J.3
-
41
-
-
80053573320
-
Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
-
Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Micromech. Microeng. 20, 1131-1142 (2011).
-
(2011)
J. Micromech. Microeng
, vol.20
, pp. 1131-1142
-
-
Liu, H.1
Tay, C.J.2
Quan, C.3
Kobayashi, T.4
Lee, C.5
-
42
-
-
84861496773
-
A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
-
Liu, H., Lee, C., Kobayashi, T., Tay, C. J. & Quan, C. A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 18, 497-506 (2012).
-
(2012)
Microsyst. Technol
, vol.18
, pp. 497-506
-
-
Liu, H.1
Lee, C.2
Kobayashi, T.3
Tay, C.J.4
Quan, C.5
-
43
-
-
27144528640
-
On the effectiveness of vibration-based energy harvesting
-
Roundy, S. On the effectiveness of vibration-based energy harvesting. J. Intel Mat. Syst. Str. 16, 809-823 (2005).
-
(2005)
J. Intel Mat. Syst. Str
, vol.16
, pp. 809-823
-
-
Roundy, S.1
-
44
-
-
5744241231
-
A piezoelectric vibration based generator for wireless electronics
-
Roundy, S. & Wright, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131-1142 (2004).
-
(2004)
Smart Mater. Struct
, vol.13
, pp. 1131-1142
-
-
Roundy, S.1
Wright, P.K.2
-
45
-
-
3142697662
-
New thermoelectric components using microsystem technologies
-
Bottner, H. et al. New thermoelectric components using microsystem technologies. J. Microelectro. Mech. S. 13, 414-420 (2004).
-
(2004)
J. Microelectro. Mech. S
, vol.13
, pp. 414-420
-
-
Bottner, H.1
-
46
-
-
0031957098
-
Vibration acceleration magnitudes of hand-held tools and work pieces
-
Ikeda, K., Ishizuka, H., Sawada, A. & Urushiyama, K. Vibration acceleration magnitudes of hand-held tools and work pieces. Industrial Health 36, 197-208 (1998).
-
(1998)
Industrial Health
, vol.36
, pp. 197-208
-
-
Ikeda, K.1
Ishizuka, H.2
Sawada, A.3
Urushiyama, K.4
-
47
-
-
4944249106
-
Actiseat: Active vehicle seat for acceleration compensation
-
Frechin, M. M., Arino, S. B. & Fontaine, J. Actiseat: Active vehicle seat for acceleration compensation. P. I. Mech. Eng. D-J. 218, 925-933 (2004).
-
(2004)
P. I. Mech. Eng. D-J.
, vol.218
, pp. 925-933
-
-
Frechin, M.M.1
Arino, S.B.2
Fontaine, J.3
-
48
-
-
33751113307
-
Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting
-
Fang, H. B. et al. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. J. Microelectron. 37, 1280-1284 (2006).
-
(2006)
J. Microelectron
, vol.37
, pp. 1280-1284
-
-
Fang, H.B.1
-
49
-
-
84903444629
-
Fiber-based generator for earable electronics and mobile medication
-
Zhong, J. et al. Fiber-based generator for earable electronics and mobile medication. ACS Nano. 8, 6273-6280 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 6273-6280
-
-
Zhong, J.1
-
50
-
-
68849103726
-
Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
-
Shen, D. et al. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuators A 154, 103-108 (2009).
-
(2009)
Sens. Actuators A
, vol.154
, pp. 103-108
-
-
Shen, D.1
|