-
1
-
-
0042909130
-
Feller's renewal theorem for systems of renewal equations
-
[1] Athreya, K.B., Murthy, K.R., Feller's renewal theorem for systems of renewal equations. J. Indian Inst. Sci. 58:10 (1976), 437–459.
-
(1976)
J. Indian Inst. Sci.
, vol.58
, Issue.10
, pp. 437-459
-
-
Athreya, K.B.1
Murthy, K.R.2
-
2
-
-
0002277539
-
Mixed equilibria and dynamical systems arising from fictitious play in perturbed games
-
[2] Benaïm, M., Hirsch, M.W., Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. Games and Econom. Behav. 29 (1999), 36–72.
-
(1999)
Games and Econom. Behav.
, vol.29
, pp. 36-72
-
-
Benaïm, M.1
Hirsch, M.W.2
-
3
-
-
33846611864
-
Balanced inhibition and excitation drive spike activity in spinal Half-Centers
-
[3] Berg, R.W., Alaburda, A., Hounsgaard, J., Balanced inhibition and excitation drive spike activity in spinal Half-Centers. Science 315 (2007), 390–393.
-
(2007)
Science
, vol.315
, pp. 390-393
-
-
Berg, R.W.1
Alaburda, A.2
Hounsgaard, J.3
-
4
-
-
84881625385
-
Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations
-
[4] Berg, R.W., Ditlevsen, S., Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations. J. Neurophysiol. 110 (2013), 1021–1034.
-
(2013)
J. Neurophysiol.
, vol.110
, pp. 1021-1034
-
-
Berg, R.W.1
Ditlevsen, S.2
-
5
-
-
52449108615
-
Intense synaptic activity enhances temporal resolution in spinal motoneurons
-
[5] Berg, R.W., Ditlevsen, S., Hounsgaard, J., Intense synaptic activity enhances temporal resolution in spinal motoneurons. PLoS ONE, 3, 2008, e3218.
-
(2008)
PLoS ONE
, vol.3
, pp. e3218
-
-
Berg, R.W.1
Ditlevsen, S.2
Hounsgaard, J.3
-
6
-
-
0030352915
-
Stability of nonlinear Hawkes processes
-
[6] Brémaud, P., Massoulié, L., Stability of nonlinear Hawkes processes. Ann. Probab. 24:3 (1996), 1563–1588.
-
(1996)
Ann. Probab.
, vol.24
, Issue.3
, pp. 1563-1588
-
-
Brémaud, P.1
Massoulié, L.2
-
7
-
-
85019289886
-
-
Mean-field limit of generalized Hawkes processes. Available on, 2015.
-
[7] J. Chevallier, Mean-field limit of generalized Hawkes processes. Available on http://arxiv.org/abs/1510.05620, 2015.
-
-
-
Chevallier, J.1
-
8
-
-
84944278123
-
Microscopic approach of a time elapsed neural model
-
[8] Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P., Microscopic approach of a time elapsed neural model. Math. Mod. Meth. Appl. Sci. 25:14 (2015), 2669–2719.
-
(2015)
Math. Mod. Meth. Appl. Sci.
, vol.25
, Issue.14
, pp. 2669-2719
-
-
Chevallier, J.1
Caceres, M.J.2
Doumic, M.3
Reynaud-Bouret, P.4
-
9
-
-
0023688346
-
Maximum likelihood identification of neural point process systems
-
[9] Chornoboy, E., Schramm, L., Karr, A., Maximum likelihood identification of neural point process systems. Biol Cybern 59 (1988), 265–275.
-
(1988)
Biol Cybern
, vol.59
, pp. 265-275
-
-
Chornoboy, E.1
Schramm, L.2
Karr, A.3
-
10
-
-
84942370237
-
Collective periodicity in mean-field models of cooperative behavior
-
[10] Collet, F., Dai Pra, P., Formentin, M., Collective periodicity in mean-field models of cooperative behavior. Nonlinear Differential Equations Appl. NoDEA. 22:5 (2015), 1461–1482.
-
(2015)
Nonlinear Differential Equations Appl. NoDEA.
, vol.22
, Issue.5
, pp. 1461-1482
-
-
Collet, F.1
Dai Pra, P.2
Formentin, M.3
-
11
-
-
0001328093
-
On systems of renewal equations
-
[11] Crump, K.S., On systems of renewal equations. J. Math. Anal. Appl. 30 (1970), 425–434.
-
(1970)
J. Math. Anal. Appl.
, vol.30
, pp. 425-434
-
-
Crump, K.S.1
-
12
-
-
84878801028
-
A Curie–Weiss model with dissipation
-
[12] Dai Pra, P., Fischer, M., Regoli, D., A Curie–Weiss model with dissipation. J. Stat. Phys. 152 (2015), 37–53.
-
(2015)
J. Stat. Phys.
, vol.152
, pp. 37-53
-
-
Dai Pra, P.1
Fischer, M.2
Regoli, D.3
-
13
-
-
84958689303
-
Hawkes processes on large networks
-
[13] Delattre, S., Fournier, N., Hoffmann, M., Hawkes processes on large networks. Ann. App. Probab. 26 (2016), 216–261.
-
(2016)
Ann. App. Probab.
, vol.26
, pp. 216-261
-
-
Delattre, S.1
Fournier, N.2
Hoffmann, M.3
-
14
-
-
17144369526
-
Parameter estimation in a stochastic model of the tubuloglomerular feedback mechanism in a rat nephron
-
[14] Ditlevsen, S., Yip, K.-P., Holstein-Rathlou, N.-H., Parameter estimation in a stochastic model of the tubuloglomerular feedback mechanism in a rat nephron. Math. Biosci. 194 (2005), 49–69.
-
(2005)
Math. Biosci.
, vol.194
, pp. 49-69
-
-
Ditlevsen, S.1
Yip, K.-P.2
Holstein-Rathlou, N.-H.3
-
15
-
-
60549107509
-
Subgeometric rates of convergence of f-ergodic strong Markov processes
-
[15] Douc, R., Fort, G., Guillin, A., Subgeometric rates of convergence of f-ergodic strong Markov processes. Stochastic Process. Appl. 119:3 (2009), 897–923.
-
(2009)
Stochastic Process. Appl.
, vol.119
, Issue.3
, pp. 897-923
-
-
Douc, R.1
Fort, G.2
Guillin, A.3
-
16
-
-
84994678441
-
Modeling networks of spiking neurons as interacting processes with memory of variable length
-
[16] Galves, A., Löcherbach, E., Modeling networks of spiking neurons as interacting processes with memory of variable length. J. Soc. Fran. Stat. 157 (2016), 17–32.
-
(2016)
J. Soc. Fran. Stat.
, vol.157
, pp. 17-32
-
-
Galves, A.1
Löcherbach, E.2
-
17
-
-
0003707162
-
From Clocks to Chaos: The Rhythms of Life
-
Princeton University Press
-
[17] Glass, L., Mackey, M.C., From Clocks to Chaos: The Rhythms of Life. 1988, Princeton University Press.
-
(1988)
-
-
Glass, L.1
Mackey, M.C.2
-
18
-
-
58449137105
-
Chaoticity for multiclass systems and exchangeability within classes
-
[18] Graham, C., Chaoticity for multiclass systems and exchangeability within classes. J. Appl. Prob. 45 (2008), 1196–1203.
-
(2008)
J. Appl. Prob.
, vol.45
, pp. 1196-1203
-
-
Graham, C.1
-
19
-
-
70549083896
-
Interacting multi-class transmissions in large stochastic systems
-
[19] Graham, C., Robert, P., Interacting multi-class transmissions in large stochastic systems. Ann. Appl. Prob. 19:6 (2009), 2334–2361.
-
(2009)
Ann. Appl. Prob.
, vol.19
, Issue.6
, pp. 2334-2361
-
-
Graham, C.1
Robert, P.2
-
20
-
-
84924960240
-
Lasso and probabilistic inequalities for multivariate point processes
-
[20] Hansen, N., Reynaud-Bouret, P., Rivoirard, V., Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21:1 (2015), 83–143.
-
(2015)
Bernoulli
, vol.21
, Issue.1
, pp. 83-143
-
-
Hansen, N.1
Reynaud-Bouret, P.2
Rivoirard, V.3
-
21
-
-
0002920214
-
Spectra of some self-exciting and mutually exciting point processes
-
[21] Hawkes, A.G., Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1971), 83–90.
-
(1971)
Biometrika
, vol.58
, pp. 83-90
-
-
Hawkes, A.G.1
-
22
-
-
0001446567
-
A cluster process representation of a self-exciting process
-
[22] Hawkes, A.G., Oakes, D., A cluster process representation of a self-exciting process. J. Appl. Prob. 11 (1974), 93–503.
-
(1974)
J. Appl. Prob.
, vol.11
, pp. 93-503
-
-
Hawkes, A.G.1
Oakes, D.2
-
23
-
-
84956106116
-
Systems of differential equations which are competitive or cooperative, III: Competing Species
-
[23] Hirsch, M.W., Systems of differential equations which are competitive or cooperative, III: Competing Species. Nonlinearity 1 (1988), 51–71.
-
(1988)
Nonlinearity
, vol.1
, pp. 51-71
-
-
Hirsch, M.W.1
-
24
-
-
85019276571
-
-
Ergodicity and limit theorems for degenerate diffusions with time periodic drift. Application to a stochastic Hodgkin–Huxley model. Available on, 2015.
-
[24] R. Höpfner, E. Löcherbach, M. Thieullen, Ergodicity and limit theorems for degenerate diffusions with time periodic drift. Application to a stochastic Hodgkin–Huxley model. Available on http://arxiv.org/abs/1503.01648, 2015.
-
-
-
Höpfner, R.1
Löcherbach, E.2
Thieullen, M.3
-
25
-
-
0003537037
-
Stochastic Differential Equations and Diffusion Processes
-
North Holland
-
[25] Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes. 1989, North Holland.
-
(1989)
-
-
Ikeda, N.1
Watanabe, S.2
-
26
-
-
0001392137
-
A classification of the second order degenerate elliptic operators and its probabilistic characterization
-
[26] Ishihara, K., Kunita, H., A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 30 (1974), 235–254.
-
(1974)
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
, vol.30
, pp. 235-254
-
-
Ishihara, K.1
Kunita, H.2
-
27
-
-
83055179797
-
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process
-
[27] Jahn, P., Berg, R.W., Hounsgaard, J., Ditlevsen, S., Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process. J. Comput. Neurosci. 31 (2011), 563–579.
-
(2011)
J. Comput. Neurosci.
, vol.31
, pp. 563-579
-
-
Jahn, P.1
Berg, R.W.2
Hounsgaard, J.3
Ditlevsen, S.4
-
28
-
-
0000649975
-
Stable attracting sets in dynamical systems and in their one-step discretizations
-
[28] Kloeden, P.E., Lorenz, J., Stable attracting sets in dynamical systems and in their one-step discretizations. SIAM J. Numer. Anal. 23 (1986), 986–995.
-
(1986)
SIAM J. Numer. Anal.
, vol.23
, pp. 986-995
-
-
Kloeden, P.E.1
Lorenz, J.2
-
29
-
-
0003522827
-
Stochastic Flows and Stochastic Differential Equations
-
Cambridge University Press
-
[29] Kunita, H., Stochastic Flows and Stochastic Differential Equations. 1990, Cambridge University Press.
-
(1990)
-
-
Kunita, H.1
-
30
-
-
0001051330
-
The Poincaré-Bendixson theorem for monotone cyclic feedback systems
-
[30] Mallet-Paret, J., Smith, H.L., The Poincaré-Bendixson theorem for monotone cyclic feedback systems. J. Dynam. Diff. Equ. 2:4 (1990), 367–421.
-
(1990)
J. Dynam. Diff. Equ.
, vol.2
, Issue.4
, pp. 367-421
-
-
Mallet-Paret, J.1
Smith, H.L.2
-
31
-
-
0013198016
-
A simple proof of the support theorem for diffusion processes
-
[31] Millet, A., Sanz-Solé, M., A simple proof of the support theorem for diffusion processes. Semin. Probab. (Strasbourg) 28 (1994), 26–48.
-
(1994)
Semin. Probab. (Strasbourg)
, vol.28
, pp. 26-48
-
-
Millet, A.1
Sanz-Solé, M.2
-
32
-
-
84899459301
-
Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis
-
[32] Reynaud-Bouret, P., Rivoirard, V., Grammont, F., Tuleau-Malot, C., Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. J. Math. Neurosci. (JMN) 4 (2014), 1–41.
-
(2014)
J. Math. Neurosci. (JMN)
, vol.4
, pp. 1-41
-
-
Reynaud-Bouret, P.1
Rivoirard, V.2
Grammont, F.3
Tuleau-Malot, C.4
-
33
-
-
46549091328
-
Noise can create periodic behavior and stabilize nonlinear diffusions
-
[33] Scheutzow, M., Noise can create periodic behavior and stabilize nonlinear diffusions. Stochastic Process. Appl. 20 (1985), 323–331.
-
(1985)
Stochastic Process. Appl.
, vol.20
, pp. 323-331
-
-
Scheutzow, M.1
-
34
-
-
0040685322
-
Some examples of nonlinear diffusion processes having a time-periodic law
-
[34] Scheutzow, M., Some examples of nonlinear diffusion processes having a time-periodic law. Ann. Probab. 13:2 (1985), 379–384.
-
(1985)
Ann. Probab.
, vol.13
, Issue.2
, pp. 379-384
-
-
Scheutzow, M.1
-
35
-
-
62149107132
-
The effect of different forms for the delay in a model of the nephron
-
[35] Skeldon, A.C., Purvey, I., The effect of different forms for the delay in a model of the nephron. Math. Biosci. Eng. 2:1 (2005), 97–109.
-
(2005)
Math. Biosci. Eng.
, vol.2
, Issue.1
, pp. 97-109
-
-
Skeldon, A.C.1
Purvey, I.2
-
36
-
-
0000395295
-
On the support of diffusion processes with applications to the strong maximum principle
-
[36] Strook, D., Varadhan, S., On the support of diffusion processes with applications to the strong maximum principle. Proc. 6th Berkeley Symp. Math. Stat. Prob. III, 1972, 333–359.
-
(1972)
Proc. 6th Berkeley Symp. Math. Stat. Prob. III
, pp. 333-359
-
-
Strook, D.1
Varadhan, S.2
-
37
-
-
0001105004
-
Topics in propagation of chaos
-
Springer Berlin
-
[37] Sznitman, A.-S., Topics in propagation of chaos. École d’Été de Probabilités de Saint-Flour XIX—1989 Lecture Notes in Math., vol. 1464, 1991, Springer, Berlin, 165–251.
-
(1991)
École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math.
, vol.1464
, pp. 165-251
-
-
Sznitman, A.-S.1
-
38
-
-
0003297632
-
Stability Theory by Ljapunov's Second Method
-
The Mathematical Society of Japan. VIII Tokyo
-
[38] Yoshizawa, T., Stability Theory by Ljapunov's Second Method. Publications of the Mathematical Society of Japan, vol. 9, 1966, The Mathematical Society of Japan. VIII, Tokyo.
-
(1966)
Publications of the Mathematical Society of Japan
, vol.9
-
-
Yoshizawa, T.1
|