-
1
-
-
85037202698
-
-
F. Rieke, D. Warland, R. Steveninck, and W. Bialek, Exploring the Neural Code (MIT Press, Cambridge, MA, 1996)
-
F. Rieke, D. Warland, R. Steveninck, and W. Bialek, Exploring the Neural Code (MIT Press, Cambridge, MA, 1996).
-
-
-
-
12
-
-
0024255761
-
-
R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H.J. Reitboeck, Biol. Cybern. 60, 121 (1988).
-
(1988)
Biol. Cybern.
, vol.60
, pp. 121
-
-
Eckhorn, R.1
Bauer, R.2
Jordan, W.3
Brosch, M.4
Kruse, W.5
Munk, M.6
Reitboeck, H.J.7
-
16
-
-
85037239187
-
-
L. Abbott and T. J. Sejnowski, Neural Codes and Distributed Representations (MIT Press, Cambridge, MA, 1998)
-
L. Abbott and T. J. Sejnowski, Neural Codes and Distributed Representations (MIT Press, Cambridge, MA, 1998).
-
-
-
-
21
-
-
0032417961
-
-
N. Hatsopoulas, C.L. Ojakangas, L. Paninski, and J.P. Donohue, Proc. Natl. Acad. Sci. U.S.A. 95, 15 706 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 15706
-
-
Hatsopoulas, N.1
Ojakangas, C.L.2
Paninski, L.3
Donohue, J.P.4
-
24
-
-
0039065101
-
-
L. Gammaitoni, P. Hännggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).
-
(1998)
Rev. Mod. Phys.
, vol.70
, pp. 223
-
-
Gammaitoni, L.1
Hännggi, P.2
Jung, P.3
Marchesoni, F.4
-
25
-
-
33845291307
-
-
V.S. Anishchenko, A.B. Neiman, F. Moss, and L. Schimansky-Geier Usp. Fiz. Nauk. 169, 7 (1999) [Phys. Usp. 42, 7 (1999)].
-
(1999)
Phys. Usp.
, vol.42
, pp. 7
-
-
Anishchenko, V.S.1
Neiman, A.B.2
Moss, F.3
Schimansky-Geier, L.4
-
26
-
-
85037198876
-
-
J. P. Segund, J. F. Vibert, K. Pakdaman, M. Stiber, and O. Diez-Martinez, in Origins; Brain and Self Organization, edited by K. Pribram (Lawrence Erlbaum, Mahwah, NJ, 1994), pp. 299–331
-
J. P. Segund, J. F. Vibert, K. Pakdaman, M. Stiber, and O. Diez-Martinez, in Origins; Brain and Self Organization, edited by K. Pribram (Lawrence Erlbaum, Mahwah, NJ, 1994), pp. 299–331.
-
-
-
-
33
-
-
0001503650
-
-
T. Shimokawa, A. Rogel, K. Pakdaman, and S. Sato, Phys. Rev. E 59, 3461 (1999).
-
(1999)
Phys. Rev. E
, vol.59
, pp. 3461
-
-
Shimokawa, T.1
Rogel, A.2
Pakdaman, K.3
Sato, S.4
-
36
-
-
0032519099
-
-
D. Hansel, G. Mato, M. Meunier, and L. Nelteur, Neural Comput. 10, 467 (1998).
-
(1998)
Neural Comput.
, vol.10
, pp. 467
-
-
Hansel, D.1
Mato, G.2
Meunier, M.3
Nelteur, L.4
-
39
-
-
36149037160
-
-
A. Treves, Network 4, 259 (1993).
-
(1993)
Network
, vol.4
, pp. 259
-
-
Treves, A.1
-
51
-
-
11744282252
-
-
K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F. Moss, Phys. Rev. Lett. 72, 2125 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2125
-
-
Wiesenfeld, K.1
Pierson, D.2
Pantazelou, E.3
Dames, C.4
Moss, F.5
-
58
-
-
85037231169
-
-
the case of multiple subclusters discussed in Sec. IV, the average of (Formula presented) of an arbitrary function (Formula presented) is formally given in the same way as shown in Eq. (8) (but with the dimension of (Formula presented) When the variable (Formula presented) includes only the component (Formula presented) relevant to the subcluster m, the average is given by (Formula presented) where (Formula presented) denotes pdf expressed by the (Formula presented)-dimensional variable (Formula presented) Then the problem reduces to the single-cluster case discussed in Sec. II
-
In the case of multiple subclusters discussed in Sec. IV, the average of (Formula presented) of an arbitrary function (Formula presented) is formally given in the same way as shown in Eq. (8) (but with the dimension of (Formula presented) When the variable (Formula presented) includes only the component (Formula presented) relevant to the subcluster m, the average is given by (Formula presented) where (Formula presented) denotes pdf expressed by the (Formula presented)-dimensional variable (Formula presented) Then the problem reduces to the single-cluster case discussed in Sec. II.
-
-
-
-
60
-
-
0027430030
-
-
M. Abeles, H. Bergman, E. Margalit, and E. Vaadia, J. Neurophysiol. 70, 1629 (1993).
-
(1993)
J. Neurophysiol.
, vol.70
, pp. 1629
-
-
Abeles, M.1
Bergman, H.2
Margalit, E.3
Vaadia, E.4
-
61
-
-
85037231915
-
-
the moment method, the number of DEs is (Formula presented) which is 14, 860, 80 600, and 8 006 000 for (Formula presented) 10, 100, and 1000, respectively, with (Formula presented)
-
In the moment method, the number of DEs is (Formula presented) which is 14, 860, 80 600, and 8 006 000 for (Formula presented) 10, 100, and 1000, respectively, with (Formula presented)
-
-
-
|