메뉴 건너뛰기




Volumn 11, Issue 12, 2016, Pages 1039-1051

Nanotechnology for environmentally sustainable electromobility

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL LIFE; CLIMATE CHANGE; ECONOMIC AND SOCIAL EFFECTS; FUEL CELLS; ION EXCHANGE; LITHIUM-ION BATTERIES; NANOSTRUCTURED MATERIALS; PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC); SUSTAINABLE DEVELOPMENT;

EID: 85002708555     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2016.237     Document Type: Article
Times cited : (120)

References (174)
  • 6
    • 84949217063 scopus 로고    scopus 로고
    • The energy-storage frontier: Lithium-ion batteries and beyond
    • Crabtree G, Kócs E, & Trahey L. The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull. 40, 1067-1078 (2015).
    • (2015) MRS Bull , vol.40 , pp. 1067-1078
    • Crabtree, G.1    Kócs, E.2    Trahey, L.3
  • 7
    • 48649100596 scopus 로고    scopus 로고
    • Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: Implications for policy
    • Samaras C, & Meisterling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170-3176 (2008).
    • (2008) Environ. Sci. Technol , vol.42 , pp. 3170-3176
    • Samaras, C.1    Meisterling, K.2
  • 8
    • 84868208753 scopus 로고    scopus 로고
    • Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany
    • Szczechowicz E, Dederichs T, & Schnettler A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 17, 1131-1141 (2012).
    • (2012) Int. J. Life Cycle Assess , vol.17 , pp. 1131-1141
    • Szczechowicz, E.1    Dederichs, T.2    Schnettler, A.3
  • 9
    • 84867210072 scopus 로고    scopus 로고
    • Electric cars: Technical characteristics and environmental impacts
    • Helmers E, & Marx P. Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24, 1-15 (2012).
    • (2012) Environ. Sci. Eur , vol.24 , pp. 1-15
    • Helmers, E.1    Marx, P.2
  • 10
    • 84945131996 scopus 로고    scopus 로고
    • A life-cycle perspective on automotive fuel cells
    • Simons A, & Bauer C. A life-cycle perspective on automotive fuel cells. Appl. Energy 157, 884-896 (2015).
    • (2015) Appl Energy , vol.157 , pp. 884-896
    • Simons, A.1    Bauer, C.2
  • 11
    • 84901832614 scopus 로고    scopus 로고
    • Emerging approaches, challenges and opportunities in life cycle assessment
    • Hellweg S, & Milà i Canals L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109-1113 (2014).
    • (2014) Science , vol.344 , pp. 1109-1113
    • Hellweg, S.1    Milà, I.2    Canals, L.3
  • 12
    • 54349127593 scopus 로고    scopus 로고
    • Energy requirements of carbon nanoparticle production
    • Kushnir D, & Sandén B. a. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360-375 (2008).
    • (2008) J. Ind. Ecol , vol.12 , pp. 360-375
    • Kushnir, D.1    Sandén, B.A.2
  • 13
    • 79959720660 scopus 로고    scopus 로고
    • Multi-level energy analysis of emerging technologies: A case study in new materials for lithium ion batteries
    • Kushnir D, & Sandén B. A. Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. J. Clean. Prod. 19, 1405-1416 (2011).
    • (2011) J. Clean. Prod , vol.19 , pp. 1405-1416
    • Kushnir, D.1    Sandén, B.A.2
  • 14
    • 84869880989 scopus 로고    scopus 로고
    • Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy
    • Bartolozzi I, Rizzi F, & Frey M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl. Energy 101, 103-111 (2013).
    • (2013) Appl. Energy , vol.101 , pp. 103-111
    • Bartolozzi, I.1    Rizzi, F.2    Frey, M.3
  • 15
    • 84982111239 scopus 로고    scopus 로고
    • The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework
    • Bauer C, Hofer J, Althaus H.-J, Del Duce A, & Simons A. The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl. Energy 157, 871-883 (2015).
    • (2015) Appl. Energy , vol.157 , pp. 871-883
    • Bauer, C.1    Hofer, J.2    Althaus, H.-J.3    Del Duce, A.4    Simons, A.5
  • 16
    • 84919657178 scopus 로고    scopus 로고
    • The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction
    • Dunn J. B, Gaines L, Kelly J. C, James C, & Gallagher K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy Environ. Sci. 8, 158-168 (2015).
    • (2015) Energy Environ. Sci , vol.8 , pp. 158-168
    • Dunn, J.B.1    Gaines, L.2    Kelly, J.C.3    James, C.4    Gallagher, K.G.5
  • 17
    • 84859639700 scopus 로고    scopus 로고
    • A sustainability assessment of electric vehicles as a personal mobility system
    • Faria R, Moura P, Delgado J, & de Almeida A. T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 61, 19-30 (2012).
    • (2012) Energy Convers Manag , vol.61 , pp. 19-30
    • Faria, R.1    Moura, P.2    Delgado, J.3    De Almeida, A.T.4
  • 18
    • 84975478892 scopus 로고    scopus 로고
    • The size and range effect: Lifecycle greenhouse gas emissions of electric vehicles
    • Ellingsen L. A.-W, Singh B, & Strømman A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).
    • (2016) Environ. Res. Lett , vol.11 , pp. 054010
    • Ellingsen, L.A.-W.1    Singh, B.2    Strømman, A.H.3
  • 19
    • 84874220742 scopus 로고    scopus 로고
    • Comparative environmental life cycle assessment of conventional and electric vehicles
    • Hawkins T. R, Singh B, Majeau-Bettez G, & Strømman A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17, 53-64 (2012).
    • (2012) J. Ind. Ecol , vol.17 , pp. 53-64
    • Hawkins, T.R.1    Singh, B.2    Majeau-Bettez, G.3    Strømman, A.H.4
  • 20
    • 84946139354 scopus 로고    scopus 로고
    • Integrated environmental and economic assessment of current and future fuel cell vehicles
    • Miotti M, Hofer J, & Bauer C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-015-0986-4 (2015).
    • (2015) Int. J. Life Cycle Assess
    • Miotti, M.1    Hofer, J.2    Bauer, C.3
  • 22
    • 77956154622 scopus 로고    scopus 로고
    • Contribution of Li-ion batteries to the environmental impact of electric vehicles
    • Notter D. A, et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol.44, 6550-6556 (2010).
    • (2010) Environ. Sci. Technol , vol.44 , pp. 6550-6556
    • Notter, D.A.1
  • 23
    • 84895510532 scopus 로고    scopus 로고
    • Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles
    • Li B, Gao X, Li J, & Yuan C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047-3055 (2014).
    • (2014) Environ. Sci. Technol , vol.48 , pp. 3047-3055
    • Li, B.1    Gao, X.2    Li, J.3    Yuan, C.4
  • 24
    • 79956033181 scopus 로고    scopus 로고
    • Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles
    • Majeau-Bettez G, Hawkins T. R, & Strømman A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548-4554 (2011).
    • (2011) Environ. Sci. Technol , vol.45 , pp. 4548-4554
    • Majeau-Bettez, G.1    Hawkins, T.R.2    Strømman, A.H.3
  • 25
    • 77955555624 scopus 로고    scopus 로고
    • Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - Critical issues
    • Zackrisson M, Avellan L, & Orlenius J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - critical issues. J. Clean. Prod. 18, 1519-1529 (2010).
    • (2010) J. Clean. Prod , vol.18 , pp. 1519-1529
    • Zackrisson, M.1    Avellan, L.2    Orlenius, J.3
  • 26
    • 84898779214 scopus 로고    scopus 로고
    • Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass
    • Singh B, Guest G, Bright R. M, & Strømman A. H. Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. J. Ind. Ecol. 18, 176-186 (2014).
    • (2014) J. Ind. Ecol , vol.18 , pp. 176-186
    • Singh, B.1    Guest, G.2    Bright, R.M.3    Strømman, A.H.4
  • 27
    • 84655162784 scopus 로고    scopus 로고
    • Non precious metal catalysts for the PEM fuel cell cathode
    • Othman R, Dicks A. L, & Zhu Z. Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrogen Energy 37, 357-372 (2012).
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 357-372
    • Othman, R.1    Dicks, A.L.2    Zhu, Z.3
  • 28
    • 84861958406 scopus 로고    scopus 로고
    • Electrocatalyst approaches and challenges for automotive fuel cells
    • Debe M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43-51 (2012).
    • (2012) Nature , vol.486 , pp. 43-51
    • Debe, M.K.1
  • 29
    • 48149094359 scopus 로고    scopus 로고
    • A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies
    • Wu J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184 104-119 (2008).
    • (2008) J. Power Sources , vol.184 , pp. 104-119
    • Wu, J.1
  • 30
    • 65549087164 scopus 로고    scopus 로고
    • Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles
    • Shiau C.-S. N, Samaras C, Hauffe R, & Michalek J. J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37, 2653-2663 (2009).
    • (2009) Energy Policy , vol.37 , pp. 2653-2663
    • Shiau, C.-S.N.1    Samaras, C.2    Hauffe, R.3    Michalek, J.J.4
  • 31
    • 84929590319 scopus 로고    scopus 로고
    • Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates
    • Iwan A, Malinowski M, & Pasciak G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 49, 954-967 (2015).
    • (2015) Renew. Sustain. Energy Rev , vol.49 , pp. 954-967
    • Iwan, A.1    Malinowski, M.2    Pasciak, G.3
  • 34
    • 84898015362 scopus 로고    scopus 로고
    • Review on recent progress of nanostructured anode materials for Li-ion batteries
    • Goriparti S, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421-443 (2014).
    • (2014) J. Power Sources , vol.257 , pp. 421-443
    • Goriparti, S.1
  • 35
    • 84927920045 scopus 로고    scopus 로고
    • Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
    • Nie Y, Li L, & Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168-201 (2015).
    • (2015) Chem. Soc. Rev , vol.44 , pp. 2168-2201
    • Nie, Y.1    Li, L.2    Wei, Z.3
  • 36
    • 53549103883 scopus 로고    scopus 로고
    • Inorganic nanomaterials for batteries
    • Whittingham M. S. Inorganic nanomaterials for batteries. Dalton Trans. 2008, 5424-5431 (2008).
    • (2008) Dalton Trans , vol.2008 , pp. 5424-5431
    • Whittingham, M.S.1
  • 37
    • 84916613059 scopus 로고    scopus 로고
    • Ultimate limits to intercalation reactions for lithium batteries
    • Whittingham M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414-11443 (2014).
    • (2014) Chem. Rev , vol.114 , pp. 11414-11443
    • Whittingham, M.S.1
  • 38
    • 84916608418 scopus 로고    scopus 로고
    • Alloy negative electrodes for Li-ion batteries
    • Obrovac M. N, & Chevrier V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444-11502 (2014).
    • (2014) Chem. Rev , vol.114 , pp. 11444-11502
    • Obrovac, M.N.1    Chevrier, V.L.2
  • 39
    • 77249086655 scopus 로고    scopus 로고
    • Advanced materials for energy storage
    • Liu C, Li F, Ma L.-P, & Cheng H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28-E62 (2010).
    • (2010) Adv. Mater , vol.22 , pp. E28-E62
    • Liu, C.1    Li, F.2    Ma, L.-P.3    Cheng, H.-M.4
  • 40
    • 84898801617 scopus 로고    scopus 로고
    • Quantifying the promise of lithium-Air batteries for electric vehicles
    • Gallagher K. G, et al. Quantifying the promise of lithium-Air batteries for electric vehicles. Energy Environ. Sci. 7, 1555-1563 (2014).
    • (2014) Energy Environ. Sci , vol.7 , pp. 1555-1563
    • Gallagher, K.G.1
  • 41
    • 0029141017 scopus 로고
    • Matrix approaches to abridged life cycle assessment
    • Graedel T. E, Allenby B. R, & C'mrie P. R. Matrix approaches to abridged life cycle assessment. Environ. Sci. Technol. 29, 134A-139A (1995).
    • (1995) Environ. Sci. Technol , vol.29 , pp. 134A-139A
    • Graedel, T.E.1    Allenby, B.R.2    Cmrie, P.R.3
  • 45
    • 84875144947 scopus 로고    scopus 로고
    • Green chemistry: Principles and practice
    • Anastas P. T, & Eghbali N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301-312 (2010).
    • (2010) Chem. Soc. Rev , vol.39 , pp. 301-312
    • Anastas, P.T.1    Eghbali, N.2
  • 46
    • 84894238033 scopus 로고    scopus 로고
    • Life cycle assessment of a lithium-ion battery vehicle pack
    • Ellingsen L. A.-W, et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113-124 (2014).
    • (2014) J. Ind. Ecol , vol.18 , pp. 113-124
    • Ellingsen, L.A.-W.1
  • 47
    • 84927767956 scopus 로고    scopus 로고
    • Li-ion battery materials: Present and future
    • Nitta N, Wu F, Lee J. T, & Yushin G. Li-ion battery materials: present and future. Mater. Today 18, 252-264 (2015).
    • (2015) Mater. Today , vol.18 , pp. 252-264
    • Nitta, N.1    Wu, F.2    Lee, J.T.3    Yushin, G.4
  • 48
    • 84861183867 scopus 로고    scopus 로고
    • History, evolution, and future status of energy storage
    • Whittingham M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518-1534 (2012).
    • (2012) Proc. IEEE , vol.100 , pp. 1518-1534
    • Whittingham, M.S.1
  • 53
    • 69449099213 scopus 로고    scopus 로고
    • Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating
    • Ohta N, Nagaoka K, Hoshi K, Bitoh S, & Inagaki M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194, 985-990 (2009).
    • (2009) J. Power Sources , vol.194 , pp. 985-990
    • Ohta, N.1    Nagaoka, K.2    Hoshi, K.3    Bitoh, S.4    Inagaki, M.5
  • 54
    • 84867022499 scopus 로고    scopus 로고
    • Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries
    • Latorre-Sanchez M, Primo A, & Garcia H. Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J. Mater. Chem. 22, 21373-21375 (2012).
    • (2012) J. Mater. Chem , vol.22 , pp. 21373-21375
    • Latorre-Sanchez, M.1    Primo, A.2    Garcia, H.3
  • 55
    • 84876239265 scopus 로고    scopus 로고
    • Carbon nanostructures in lithium ion batteries: Past, present, and future
    • Lahiri I, & Choi W. Carbon nanostructures in lithium ion batteries: past, present, and future. Crit. Rev. Solid State Mater. Sci. 38, 128-166 (2013).
    • (2013) Crit. Rev. Solid State Mater. Sci , vol.38 , pp. 128-166
    • Lahiri, I.1    Choi, W.2
  • 57
    • 84874606642 scopus 로고    scopus 로고
    • ESPI Metals accessed 22 April 2016
    • Material Safety Data Sheets (ESPI Metals, accessed 22 April 2016); www.espimetals.com/index.php/msds
    • Material Safety Data Sheets
  • 58
    • 84881368070 scopus 로고    scopus 로고
    • Life cycle energy and climate change implications of nanotechnologies
    • Kim H. C, & Fthenakis V. Life cycle energy and climate change implications of nanotechnologies. J. Ind. Ecol. 17, 528-541 (2013).
    • (2013) J. Ind. Ecol , vol.17 , pp. 528-541
    • Kim, H.C.1    Fthenakis, V.2
  • 59
    • 64349117608 scopus 로고    scopus 로고
    • Thermodynamic analysis of resources used in manufacturing processes
    • Gutowski T. G, et al. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 43, 1584-1590 (2009).
    • (2009) Environ. Sci. Technol , vol.43 , pp. 1584-1590
    • Gutowski, T.G.1
  • 60
    • 54349116511 scopus 로고    scopus 로고
    • Toward sustainable nanoproducts
    • Sengül H, Theis T. L, & Ghosh S. Toward sustainable nanoproducts. J. Ind. Ecol. 12, 329-359 (2008).
    • (2008) J. Ind. Ecol , vol.12 , pp. 329-359
    • Sengül, H.1    Theis, T.L.2    Ghosh, S.3
  • 61
    • 84873808704 scopus 로고    scopus 로고
    • Carbon nanotubes: Present and future commercial applications
    • De Volder M. F. L, Tawfick S. H, Baughman R. H, & Hart A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535-539 (2013).
    • (2013) Science , vol.339 , pp. 535-539
    • De Volder, M.F.L.1    Tawfick, S.H.2    Baughman, R.H.3    Hart, A.J.4
  • 63
    • 84857510232 scopus 로고    scopus 로고
    • Toxicity of nanomaterials
    • Sharifi S, et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323-2343 (2012).
    • (2012) Chem. Soc. Rev , vol.41 , pp. 2323-2343
    • Sharifi, S.1
  • 64
    • 67650239336 scopus 로고    scopus 로고
    • Nanoparticles: Their potential toxicity, waste and environmental management
    • Bystrzejewska-Piotrowska G, Golimowski J, & Urban P. L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587-2595 (2009).
    • (2009) Waste Manag , vol.29 , pp. 2587-2595
    • Bystrzejewska-Piotrowska, G.1    Golimowski, J.2    Urban, P.L.3
  • 65
    • 38949108991 scopus 로고    scopus 로고
    • Studying the potential release of carbon nanotubes throughout the application life cycle
    • Köhler A. R, Som C, Helland A, & Gottschalk F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927-937 (2008).
    • (2008) J. Clean. Prod , vol.16 , pp. 927-937
    • Köhler, A.R.1    Som, C.2    Helland, A.3    Gottschalk, F.4
  • 67
    • 84892561009 scopus 로고    scopus 로고
    • Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs
    • Lee W. W, & Lee J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589-1626 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 1589-1626
    • Lee, W.W.1    Lee, J.-M.2
  • 68
    • 84877687451 scopus 로고    scopus 로고
    • Metal oxides and oxysalts as anode materials for Li ion batteries
    • Reddy M. V, Subba Rao G. V, & Chowdari B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364-5457 (2013).
    • (2013) Chem. Rev , vol.113 , pp. 5364-5457
    • Reddy, M.V.1    Subba Rao, G.V.2    Chowdari, B.V.3
  • 69
    • 84891364229 scopus 로고    scopus 로고
    • Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries
    • Ma Y, Ding B, Ji G, & Lee J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870-10878 (2013).
    • (2013) ACS Nano , vol.7 , pp. 10870-10878
    • Ma, Y.1    Ding, B.2    Ji, G.3    Lee, J.Y.4
  • 72
    • 84877798725 scopus 로고    scopus 로고
    • A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries
    • Gan L, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104, 117-123 (2013).
    • (2013) Electrochim. Acta , vol.104 , pp. 117-123
    • Gan, L.1
  • 74
    • 73249151335 scopus 로고    scopus 로고
    • Lithium batteries: Status, prospects and future
    • Scrosati B, & Garche J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419-2430 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 2419-2430
    • Scrosati, B.1    Garche, J.2
  • 75
    • 84891883895 scopus 로고    scopus 로고
    • Silicon-based nanomaterials for lithium-ion batteries: A review
    • Su X, et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1-23 (2014).
    • (2014) Adv. Energy Mater , vol.4 , pp. 1-23
    • Su, X.1
  • 76
    • 84861091085 scopus 로고    scopus 로고
    • Porous doped silicon nanowires for lithium ion battery anode with long cycle life
    • Ge M, Rong J, Fang X, & Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318-2323 (2012).
    • (2012) Nano Lett , vol.12 , pp. 2318-2323
    • Ge, M.1    Rong, J.2    Fang, X.3    Zhou, C.4
  • 77
    • 84856483134 scopus 로고    scopus 로고
    • Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material
    • Jia H, et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036-1039 (2011).
    • (2011) Adv. Energy Mater , vol.1 , pp. 1036-1039
    • Jia, H.1
  • 82
    • 85003697644 scopus 로고    scopus 로고
    • The anode challenge for lithium-ion batteries: A mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon
    • Dong Z, et al. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon. Adv. Sci. 3, 1-8 (2016).
    • (2016) Adv. Sci , vol.3 , pp. 1-8
    • Dong, Z.1
  • 84
    • 35348842671 scopus 로고    scopus 로고
    • Characterization of amorphous and crystalline tin-cobalt anodes
    • Fan Q, Chupas P. J, & Whittingham M. S. Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem. Solid State Lett. 10, A274-A278 (2007).
    • (2007) Electrochem. Solid State Lett , vol.10 , pp. A274-A278
    • Fan, Q.1    Chupas, P.J.2    Whittingham, M.S.3
  • 86
    • 85002674812 scopus 로고    scopus 로고
    • SDS accessed 22 April 2016
    • SDS | LTS (LTS Chemical, accessed 22 April 2016); https://www.ltschem.com/msds/
    • LTS (LTS Chemical
  • 90
    • 80054975361 scopus 로고    scopus 로고
    • Quasiemulsion-Templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties
    • Wang B, Chen J. S, Wu H. B, Wang Z, & Lou X. W. Quasiemulsion-Templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146-17148 (2011).
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 17146-17148
    • Wang, B.1    Chen, J.S.2    Wu, H.B.3    Wang, Z.4    Lou, X.W.5
  • 92
    • 84928964316 scopus 로고    scopus 로고
    • Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: A case study of a novel Li-Mn-Ni-Co oxide
    • Li Q, et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li-Mn-Ni-Co oxide. J. Mater. Chem. A 3, 10592-10602 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 10592-10602
    • Li, Q.1
  • 93
    • 84940434983 scopus 로고    scopus 로고
    • Review on Li-sulfur battery systems: An integral perspective
    • Rosenman A, et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1-21 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1-21
    • Rosenman, A.1
  • 96
    • 7644220712 scopus 로고    scopus 로고
    • Lithium batteries and cathode materials
    • Whittingham M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271-4301 (2004).
    • (2004) Chem. Rev , vol.104 , pp. 4271-4301
    • Whittingham, M.S.1
  • 100
    • 84940315999 scopus 로고    scopus 로고
    • Degradation and structural evolution of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling
    • Liu J, Wang R, & Xia Y. Degradation and structural evolution of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160-A167 (2013).
    • (2013) J. Electrochem. Soc , vol.161 , pp. A160-A167
    • Liu, J.1    Wang, R.2    Xia, Y.3
  • 102
    • 84876516045 scopus 로고    scopus 로고
    • High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries
    • Yu H, & Zhou H. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268-1280 (2013).
    • (2013) J. Phys. Chem. Lett , vol.4 , pp. 1268-1280
    • Yu, H.1    Zhou, H.2
  • 103
    • 84870039059 scopus 로고    scopus 로고
    • General synthesis of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries
    • Liu J, et al. General synthesis of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380-25387 (2012).
    • (2012) J. Mater. Chem , vol.22 , pp. 25380-25387
    • Liu, J.1
  • 104
    • 84947258983 scopus 로고    scopus 로고
    • Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- and Mn-rich cathodes
    • Croy J. R, Balasubramanian M, Gallagher K. G, & Burrell A. K. Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- And Mn-rich cathodes. Acc. Chem. Res. 48, 2813-2821 (2015).
    • (2015) Acc. Chem. Res , vol.48 , pp. 2813-2821
    • Croy, J.R.1    Balasubramanian, M.2    Gallagher, K.G.3    Burrell, A.K.4
  • 105
    • 76249115189 scopus 로고    scopus 로고
    • Positive electrode materials for Li-ion and Li-batteries
    • Ellis B. L, Lee K. T, & Nazar L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691-714 (2010).
    • (2010) Chem. Mater , vol.22 , pp. 691-714
    • Ellis, B.L.1    Lee, K.T.2    Nazar, L.F.3
  • 106
    • 84943396376 scopus 로고    scopus 로고
    • A review of nanofibrous structures in lithium ion batteries
    • Pampal E. S, Stojanovska E, Simon B, & Kilic A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 300 199-215 (2015).
    • (2015) J. Power Sources , vol.300 , pp. 199-215
    • Pampal, E.S.1    Stojanovska, E.2    Simon, B.3    Kilic, A.4
  • 107
    • 80055002182 scopus 로고    scopus 로고
    • Nanostructured electrodes for lithium-ion and lithium-Air batteries: The latest developments, challenges, and perspectives
    • Song M. K, Park S, Alamgir F. M, Cho J, & Liu M. Nanostructured electrodes for lithium-ion and lithium-Air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203-252 (2011).
    • (2011) Mater. Sci. Eng. R Rep , vol.72 , pp. 203-252
    • Song, M.K.1    Park, S.2    Alamgir, F.M.3    Cho, J.4    Liu, M.5
  • 108
    • 85017395613 scopus 로고    scopus 로고
    • Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review
    • Satyavani T. V. S. L, Srinivas Kumar A, & Subba Rao P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19, 178-188 (2015).
    • (2015) Eng. Sci. Technol. Int. J , vol.19 , pp. 178-188
    • Satyavani, T.V.S.L.1    Srinivas Kumar, A.2    Subba Rao, P.S.V.3
  • 109
    • 84962163301 scopus 로고    scopus 로고
    • Thermodynamics, kinetics and structural evolution of e-LiVOPO4 over multiple lithium intercalation
    • Lin Y.-C, et al. Thermodynamics, kinetics and structural evolution of e-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794-1805 (2015).
    • (2015) Chem. Mater , vol.28 , pp. 1794-1805
    • Lin, Y.-C.1
  • 111
    • 80052246206 scopus 로고    scopus 로고
    • Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries
    • Cheng F, et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4, 3668-3675 (2011).
    • (2011) Energy Environ. Sci , vol.4 , pp. 3668-3675
    • Cheng, F.1
  • 112
    • 84940438601 scopus 로고    scopus 로고
    • A sulfur cathode with pomegranate-like cluster structure
    • Li W, et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).
    • (2015) Adv Energy Mater , vol.5 , pp. 1500211
    • Li, W.1
  • 113
    • 84940440670 scopus 로고    scopus 로고
    • Progress in mechanistic understanding and characterization techniques of Li-S batteries
    • Xu R, Lu J, & Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1-22 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1-22
    • Xu, R.1    Lu, J.2    Amine, K.3
  • 114
    • 84870917023 scopus 로고    scopus 로고
    • Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries
    • Cai K, Song M.-K, Cairns E. J, & Zhang Y. Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474-6479 (2012).
    • (2012) Nano Lett , vol.12 , pp. 6474-6479
    • Cai, K.1    Song, M.-K.2    Cairns, E.J.3    Zhang, Y.4
  • 115
    • 84930937041 scopus 로고    scopus 로고
    • Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery
    • Wu S, Ge R, Lu M, Xu R, & Zhang Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379-405 (2015).
    • (2015) Nano Energy , vol.15 , pp. 379-405
    • Wu, S.1    Ge, R.2    Lu, M.3    Xu, R.4    Zhang, Z.5
  • 116
    • 84940438122 scopus 로고    scopus 로고
    • Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries
    • Son Y, Lee J. S, Son Y, Jang J. H, & Cho J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1-14 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1-14
    • Son, Y.1    Lee, J.S.2    Son, Y.3    Jang, J.H.4    Cho, J.5
  • 117
    • 85027946537 scopus 로고    scopus 로고
    • Lithium-sulfur batteries: Progress and prospects
    • Manthiram A, Chung S.-H, & Zu C. Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27, 1980-2006 (2015).
    • (2015) Adv. Mater , vol.27 , pp. 1980-2006
    • Manthiram, A.1    Chung, S.-H.2    Zu, C.3
  • 121
    • 84897049321 scopus 로고    scopus 로고
    • Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells
    • Nan C, et al. Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659-4663 (2014).
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 4659-4663
    • Nan, C.1
  • 122
    • 84866478555 scopus 로고    scopus 로고
    • High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries
    • Yang Y, et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387-15394 (2012).
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 15387-15394
    • Yang, Y.1
  • 125
    • 84898810767 scopus 로고    scopus 로고
    • A closed loop process for recycling spent lithium ion batteries
    • Gratz E, Sa Q, Apelian D, & Wang Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255-262 (2014).
    • (2014) J. Power Sources , vol.262 , pp. 255-262
    • Gratz, E.1    Sa, Q.2    Apelian, D.3    Wang, Y.4
  • 126
    • 38749105433 scopus 로고    scopus 로고
    • A review of processes and technologies for the recycling of lithium-ion secondary batteries
    • Xu J, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177 512-527 (2008).
    • (2008) J. Power Sources , vol.177 , pp. 512-527
    • Xu, J.1
  • 127
    • 77949913791 scopus 로고    scopus 로고
    • The importance of life cycle concepts for the development of safe nanoproducts
    • Som C, et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160-169 (2010).
    • (2010) Toxicology , vol.269 , pp. 160-169
    • Som, C.1
  • 128
    • 84938704853 scopus 로고    scopus 로고
    • A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes
    • Scofield M. E, Liu H, & Wong S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836-5860 (2015).
    • (2015) Chem Soc. Rev , vol.44 , pp. 5836-5860
    • Scofield, M.E.1    Liu, H.2    Wong, S.S.3
  • 129
    • 84919336417 scopus 로고    scopus 로고
    • Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction
    • Duan H, & Xu C. Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417-424 (2015).
    • (2015) Electrochim. Acta , vol.152 , pp. 417-424
    • Duan, H.1    Xu, C.2
  • 130
    • 80052192526 scopus 로고    scopus 로고
    • A review on non-precious metal electrocatalysts for PEM fuel cells
    • Chen Z, Higgins D, Yu A, Zhang L, & Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167-3192 (2011).
    • (2011) Energy Environ Sci , vol.4 , pp. 3167-3192
    • Chen, Z.1    Higgins, D.2    Yu, A.3    Zhang, L.4    Zhang, J.5
  • 131
    • 84962449139 scopus 로고    scopus 로고
    • Recent advances in electrocatalysts for oxygen reduction reaction
    • Shao M, Chang Q, Dodelet J.-P, & Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594-3657 (2016).
    • (2016) Chem. Rev , vol.116 , pp. 3594-3657
    • Shao, M.1    Chang, Q.2    Dodelet, J.-P.3    Chenitz, R.4
  • 132
    • 79953667003 scopus 로고    scopus 로고
    • Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
    • Morozan A, Jousselme B, & Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238-1254 (2011).
    • (2011) Energy Environ. Sci , vol.4 , pp. 1238-1254
    • Morozan, A.1    Jousselme, B.2    Palacin, S.3
  • 133
    • 83455164520 scopus 로고    scopus 로고
    • High-performance nanofiber fuel cell electrodes
    • Zhang W, & Pintauro P. N. High-performance nanofiber fuel cell electrodes. ChemSusChem 4, 1753-1757 (2011).
    • (2011) ChemSusChem , vol.4 , pp. 1753-1757
    • Zhang, W.1    Pintauro, P.N.2
  • 134
    • 84923638574 scopus 로고    scopus 로고
    • Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes
    • Brodt M, et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes. J. Electrochem. Soc. 162, F84-F91 (2014).
    • (2014) J. Electrochem. Soc , vol.162 , pp. F84-F91
    • Brodt, M.1
  • 135
    • 84898074353 scopus 로고    scopus 로고
    • Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts
    • Alia S. M, et al. Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114-1119 (2014).
    • (2014) ACS Catal , vol.4 , pp. 1114-1119
    • Alia, S.M.1
  • 136
    • 84860724356 scopus 로고    scopus 로고
    • Advanced platinum alloy electrocatalysts for the oxygen reduction reaction
    • Wang C, Markovic N. M, & Stamenkovic V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891-898 (2012).
    • (2012) ACS Catal , vol.2 , pp. 891-898
    • Wang, C.1    Markovic, N.M.2    Stamenkovic, V.R.3
  • 137
    • 84880142104 scopus 로고    scopus 로고
    • Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction
    • Choi S.-I, et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420-3425 (2013).
    • (2013) Nano Lett , vol.13 , pp. 3420-3425
    • Choi, S.-I.1
  • 138
    • 84875176053 scopus 로고    scopus 로고
    • FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction
    • Guo S, et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465-3468 (2013).
    • (2013) Angew. Chem. Int. Ed , vol.52 , pp. 3465-3468
    • Guo, S.1
  • 139
    • 33750073562 scopus 로고    scopus 로고
    • Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications
    • Tseng C.-J, Lo S.-T, Lo S.-C, & Chu P. P. Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 100, 385-390 (2006).
    • (2006) Mater. Chem. Phys , vol.100 , pp. 385-390
    • Tseng, C.-J.1    Lo, S.-T.2    Lo, S.-C.3    Chu, P.P.4
  • 140
    • 84918799188 scopus 로고    scopus 로고
    • Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction
    • Liu J, et al. Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 152, 425-432 (2015).
    • (2015) Electrochim. Acta , vol.152 , pp. 425-432
    • Liu, J.1
  • 141
    • 84904390057 scopus 로고    scopus 로고
    • Life cycle assessment of metals: A scientific synthesis
    • Nuss P, & Eckelman M. J. Life cycle assessment of metals: a scientific synthesis. PLOS One 9, 1-12 (2014).
    • (2014) PLOS One , vol.9 , pp. 1-12
    • Nuss, P.1    Eckelman, M.J.2
  • 142
    • 79961183037 scopus 로고    scopus 로고
    • Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
    • Proietti E, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).
    • (2011) Nat. Commun , vol.2 , pp. 416
    • Proietti, E.1
  • 143
    • 84881521336 scopus 로고    scopus 로고
    • Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene-CNT self-Assembly for enhanced oxygen reduction activity in acid media
    • Choi C. H, Chung M. W, Jun Y. J, & Woo S. I. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene-CNT self-Assembly for enhanced oxygen reduction activity in acid media. RSC Adv. 3, 12417-12422 (2013).
    • (2013) RSC Adv , vol.3 , pp. 12417-12422
    • Choi, C.H.1    Chung, M.W.2    Jun, Y.J.3    Woo, S.I.4
  • 144
    • 84941624259 scopus 로고    scopus 로고
    • Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions
    • Wei Q, et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574-1602 (2015).
    • (2015) Catalysts , vol.5 , pp. 1574-1602
    • Wei, Q.1
  • 145
    • 84943537257 scopus 로고    scopus 로고
    • Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction
    • Zhan Y, et al. Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930-939 (2015).
    • (2015) Carbon N.Y , vol.95 , pp. 930-939
    • Zhan, Y.1
  • 146
    • 39149130682 scopus 로고    scopus 로고
    • A review of water flooding issues in the proton exchange membrane fuel cell
    • Li H, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178 103-117 (2008).
    • (2008) J. Power Sources , vol.178 , pp. 103-1170
    • Li, H.1
  • 147
    • 84904562579 scopus 로고    scopus 로고
    • Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction
    • Higgins D, et al. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 24, 4325-4336 (2014).
    • (2014) Adv. Funct. Mater , vol.24 , pp. 4325-4336
    • Higgins, D.1
  • 148
    • 84940369713 scopus 로고    scopus 로고
    • Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review
    • Shahgaldi S, & Hamelin J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705-728 (2015).
    • (2015) Carbon , vol.94 , pp. 705-728
    • Shahgaldi, S.1    Hamelin, J.2
  • 149
    • 84857483713 scopus 로고    scopus 로고
    • Support materials for PEMFC and DMFC electrocatalysts - A review
    • Sharma S, & Pollet B. G. Support materials for PEMFC and DMFC electrocatalysts - A review. J. Power Sources 208, 96-119 (2012).
    • (2012) J. Power Sources , vol.208 , pp. 96-119
    • Sharma, S.1    Pollet, B.G.2
  • 150
    • 79951604336 scopus 로고    scopus 로고
    • Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells
    • Higgins D. C, Meza D, & Chen Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114, 21982-21988 (2010).
    • (2010) J. Phys. Chem. C , vol.114 , pp. 21982-21988
    • Higgins, D.C.1    Meza, D.2    Chen, Z.3
  • 153
    • 79955476043 scopus 로고    scopus 로고
    • Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
    • Tripathi B. P, & Shahi V. K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945-979 (2011).
    • (2011) Prog. Polym. Sci , vol.36 , pp. 945-979
    • Tripathi, B.P.1    Shahi, V.K.2
  • 154
    • 84949114778 scopus 로고    scopus 로고
    • Review of advanced materials for proton exchange membrane fuel cells
    • Kraytsberg A, & Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303-7330 (2014).
    • (2014) Energy Fuels , vol.28 , pp. 7303-7330
    • Kraytsberg, A.1    Ein-Eli, Y.2
  • 155
    • 84875714336 scopus 로고    scopus 로고
    • Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid
    • Ballengee J. B, Haugen G. M, Hamrock S. J, & Pintauro P. N. Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J. Electrochem. Soc. 160, F429-F435 (2013).
    • (2013) J. Electrochem. Soc , vol.160 , pp. F429-F435
    • Ballengee, J.B.1    Haugen, G.M.2    Hamrock, S.J.3    Pintauro, P.N.4
  • 156
    • 84953239873 scopus 로고    scopus 로고
    • Development of ion conductive nanofibers for polymer electrolyte fuel cells
    • Tanaka M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 48, 51-58 (2015).
    • (2015) Polym. J , vol.48 , pp. 51-58
    • Tanaka, M.1
  • 157
    • 84894243097 scopus 로고    scopus 로고
    • New developments in proton conducting membranes for fuel cells
    • Wycisk R, Pintauro P. N, & Park J. W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 4, 71-78 (2014).
    • (2014) Curr. Opin. Chem. Eng , vol.4 , pp. 71-78
    • Wycisk, R.1    Pintauro, P.N.2    Park, J.W.3
  • 158
    • 80052988594 scopus 로고    scopus 로고
    • Composite fuel cell membranes from dual-nanofiber electrospun mats
    • Ballengee J. B, & Pintauro P. N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44, 7307-7314 (2011).
    • (2011) Macromolecules , vol.44 , pp. 7307-7314
    • Ballengee, J.B.1    Pintauro, P.N.2
  • 159
    • 84901916945 scopus 로고    scopus 로고
    • Recent advances in polybenzimidazole/phosphoric acid membranes for high-Temperature fuel cells
    • Subianto S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-Temperature fuel cells. Polym. Int. 63, 1134-1144 (2014).
    • (2014) Polym. Int , vol.63 , pp. 1134-1144
    • Subianto, S.1
  • 161
    • 79955469656 scopus 로고    scopus 로고
    • Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells
    • Jun Y, Zarrin H, Fowler M, & Chen Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 6073-6081 (2011).
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 6073-6081
    • Jun, Y.1    Zarrin, H.2    Fowler, M.3    Chen, Z.4
  • 162
    • 84941419128 scopus 로고    scopus 로고
    • Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC
    • Wang Y, Jin J, Yang S, Li G, & Qiao J. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 177, 181-189 (2015).
    • (2015) Electrochim. Acta , vol.177 , pp. 181-189
    • Wang, Y.1    Jin, J.2    Yang, S.3    Li, G.4    Qiao, J.5
  • 163
    • 77649267991 scopus 로고    scopus 로고
    • Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC
    • Chalkovaa E, et al. Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Trans. 25, 1141-1150 (2009).
    • (2009) ECS Trans , vol.25 , pp. 1141-1150
    • Chalkovaa, E.1
  • 164
    • 33846972256 scopus 로고    scopus 로고
    • Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell
    • Kalappa P, & Lee J.-H. Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym. Int. 56, 371-375 (2007).
    • (2007) Polym. Int , vol.56 , pp. 371-375
    • Kalappa, P.1    Lee, J.-H.2
  • 165
    • 84873025260 scopus 로고    scopus 로고
    • High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review
    • Chandan A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review. J. Power Sources 231, 264-278 (2013).
    • (2013) J. Power Sources , vol.231 , pp. 264-278
    • Chandan, A.1
  • 166
    • 79952835815 scopus 로고    scopus 로고
    • Highly ordered mesoporous Nafion membranes for fuel cells
    • Lu J, Lu S, & Jiang S. P. Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216-3218 (2011).
    • (2011) Chem. Commun , vol.47 , pp. 3216-3218
    • Lu, J.1    Lu, S.2    Jiang, S.P.3
  • 167
    • 80054928225 scopus 로고    scopus 로고
    • Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells
    • Zarrin H, Higgins D, Jun Y, Chen Z, & Fowler M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774-20781 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 20774-20781
    • Zarrin, H.1    Higgins, D.2    Jun, Y.3    Chen, Z.4    Fowler, M.5
  • 168
    • 84940824611 scopus 로고    scopus 로고
    • Recovery of platinum group metal value via potassium iodide leaching
    • Patel A, & Dawson R. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy 157, 219-225 (2015).
    • (2015) Hydrometallurgy , vol.157 , pp. 219-225
    • Patel, A.1    Dawson, R.2
  • 172
    • 0036535477 scopus 로고    scopus 로고
    • Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells
    • Handley C, Brandon N. P, & Van Der Vorst R. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells. J. Power Sources 106, 344-352 (2002).
    • (2002) J. Power Sources , vol.106 , pp. 344-352
    • Handley, C.1    Brandon, N.P.2    Van Der Vorst, R.3
  • 173
    • 84871754077 scopus 로고    scopus 로고
    • Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells
    • Shiroishi H, et al. Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells. Electrochemistry 80, 898-903 (2012).
    • (2012) Electrochemistry , vol.80 , pp. 898-903
    • Shiroishi, H.1
  • 174
    • 77951021997 scopus 로고    scopus 로고
    • Recycling of membrane electrode assembly of PEMFC by acid processing
    • Xu F, Mu S, & Pan M. Recycling of membrane electrode assembly of PEMFC by acid processing. Int. J. Hydrogen Energy 35, 2976-2979 (2010).
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 2976-2979
    • Xu, F.1    Mu, S.2    Pan, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.