-
6
-
-
84949217063
-
The energy-storage frontier: Lithium-ion batteries and beyond
-
Crabtree G, Kócs E, & Trahey L. The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull. 40, 1067-1078 (2015).
-
(2015)
MRS Bull
, vol.40
, pp. 1067-1078
-
-
Crabtree, G.1
Kócs, E.2
Trahey, L.3
-
7
-
-
48649100596
-
Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: Implications for policy
-
Samaras C, & Meisterling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170-3176 (2008).
-
(2008)
Environ. Sci. Technol
, vol.42
, pp. 3170-3176
-
-
Samaras, C.1
Meisterling, K.2
-
8
-
-
84868208753
-
Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany
-
Szczechowicz E, Dederichs T, & Schnettler A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 17, 1131-1141 (2012).
-
(2012)
Int. J. Life Cycle Assess
, vol.17
, pp. 1131-1141
-
-
Szczechowicz, E.1
Dederichs, T.2
Schnettler, A.3
-
9
-
-
84867210072
-
Electric cars: Technical characteristics and environmental impacts
-
Helmers E, & Marx P. Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24, 1-15 (2012).
-
(2012)
Environ. Sci. Eur
, vol.24
, pp. 1-15
-
-
Helmers, E.1
Marx, P.2
-
10
-
-
84945131996
-
A life-cycle perspective on automotive fuel cells
-
Simons A, & Bauer C. A life-cycle perspective on automotive fuel cells. Appl. Energy 157, 884-896 (2015).
-
(2015)
Appl Energy
, vol.157
, pp. 884-896
-
-
Simons, A.1
Bauer, C.2
-
11
-
-
84901832614
-
Emerging approaches, challenges and opportunities in life cycle assessment
-
Hellweg S, & Milà i Canals L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109-1113 (2014).
-
(2014)
Science
, vol.344
, pp. 1109-1113
-
-
Hellweg, S.1
Milà, I.2
Canals, L.3
-
12
-
-
54349127593
-
Energy requirements of carbon nanoparticle production
-
Kushnir D, & Sandén B. a. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360-375 (2008).
-
(2008)
J. Ind. Ecol
, vol.12
, pp. 360-375
-
-
Kushnir, D.1
Sandén, B.A.2
-
13
-
-
79959720660
-
Multi-level energy analysis of emerging technologies: A case study in new materials for lithium ion batteries
-
Kushnir D, & Sandén B. A. Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. J. Clean. Prod. 19, 1405-1416 (2011).
-
(2011)
J. Clean. Prod
, vol.19
, pp. 1405-1416
-
-
Kushnir, D.1
Sandén, B.A.2
-
14
-
-
84869880989
-
Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy
-
Bartolozzi I, Rizzi F, & Frey M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl. Energy 101, 103-111 (2013).
-
(2013)
Appl. Energy
, vol.101
, pp. 103-111
-
-
Bartolozzi, I.1
Rizzi, F.2
Frey, M.3
-
15
-
-
84982111239
-
The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework
-
Bauer C, Hofer J, Althaus H.-J, Del Duce A, & Simons A. The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl. Energy 157, 871-883 (2015).
-
(2015)
Appl. Energy
, vol.157
, pp. 871-883
-
-
Bauer, C.1
Hofer, J.2
Althaus, H.-J.3
Del Duce, A.4
Simons, A.5
-
16
-
-
84919657178
-
The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction
-
Dunn J. B, Gaines L, Kelly J. C, James C, & Gallagher K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy Environ. Sci. 8, 158-168 (2015).
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 158-168
-
-
Dunn, J.B.1
Gaines, L.2
Kelly, J.C.3
James, C.4
Gallagher, K.G.5
-
17
-
-
84859639700
-
A sustainability assessment of electric vehicles as a personal mobility system
-
Faria R, Moura P, Delgado J, & de Almeida A. T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 61, 19-30 (2012).
-
(2012)
Energy Convers Manag
, vol.61
, pp. 19-30
-
-
Faria, R.1
Moura, P.2
Delgado, J.3
De Almeida, A.T.4
-
18
-
-
84975478892
-
The size and range effect: Lifecycle greenhouse gas emissions of electric vehicles
-
Ellingsen L. A.-W, Singh B, & Strømman A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).
-
(2016)
Environ. Res. Lett
, vol.11
, pp. 054010
-
-
Ellingsen, L.A.-W.1
Singh, B.2
Strømman, A.H.3
-
19
-
-
84874220742
-
Comparative environmental life cycle assessment of conventional and electric vehicles
-
Hawkins T. R, Singh B, Majeau-Bettez G, & Strømman A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17, 53-64 (2012).
-
(2012)
J. Ind. Ecol
, vol.17
, pp. 53-64
-
-
Hawkins, T.R.1
Singh, B.2
Majeau-Bettez, G.3
Strømman, A.H.4
-
20
-
-
84946139354
-
Integrated environmental and economic assessment of current and future fuel cell vehicles
-
Miotti M, Hofer J, & Bauer C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-015-0986-4 (2015).
-
(2015)
Int. J. Life Cycle Assess
-
-
Miotti, M.1
Hofer, J.2
Bauer, C.3
-
21
-
-
84936862897
-
Life cycle assessment of PEM FC applications: Electric mobility and μ-CHP
-
Notter D. A, Kouravelou K, Karachalios T, Daletou M. K, & Haberland N. T. Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy Environ. Sci. 8, 1969-1985 (2015).
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 1969-1985
-
-
Notter, D.A.1
Kouravelou, K.2
Karachalios, T.3
Daletou, M.K.4
Haberland, N.T.5
-
22
-
-
77956154622
-
Contribution of Li-ion batteries to the environmental impact of electric vehicles
-
Notter D. A, et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol.44, 6550-6556 (2010).
-
(2010)
Environ. Sci. Technol
, vol.44
, pp. 6550-6556
-
-
Notter, D.A.1
-
23
-
-
84895510532
-
Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles
-
Li B, Gao X, Li J, & Yuan C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047-3055 (2014).
-
(2014)
Environ. Sci. Technol
, vol.48
, pp. 3047-3055
-
-
Li, B.1
Gao, X.2
Li, J.3
Yuan, C.4
-
24
-
-
79956033181
-
Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles
-
Majeau-Bettez G, Hawkins T. R, & Strømman A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548-4554 (2011).
-
(2011)
Environ. Sci. Technol
, vol.45
, pp. 4548-4554
-
-
Majeau-Bettez, G.1
Hawkins, T.R.2
Strømman, A.H.3
-
25
-
-
77955555624
-
Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - Critical issues
-
Zackrisson M, Avellan L, & Orlenius J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - critical issues. J. Clean. Prod. 18, 1519-1529 (2010).
-
(2010)
J. Clean. Prod
, vol.18
, pp. 1519-1529
-
-
Zackrisson, M.1
Avellan, L.2
Orlenius, J.3
-
26
-
-
84898779214
-
Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass
-
Singh B, Guest G, Bright R. M, & Strømman A. H. Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. J. Ind. Ecol. 18, 176-186 (2014).
-
(2014)
J. Ind. Ecol
, vol.18
, pp. 176-186
-
-
Singh, B.1
Guest, G.2
Bright, R.M.3
Strømman, A.H.4
-
27
-
-
84655162784
-
Non precious metal catalysts for the PEM fuel cell cathode
-
Othman R, Dicks A. L, & Zhu Z. Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrogen Energy 37, 357-372 (2012).
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 357-372
-
-
Othman, R.1
Dicks, A.L.2
Zhu, Z.3
-
28
-
-
84861958406
-
Electrocatalyst approaches and challenges for automotive fuel cells
-
Debe M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43-51 (2012).
-
(2012)
Nature
, vol.486
, pp. 43-51
-
-
Debe, M.K.1
-
29
-
-
48149094359
-
A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies
-
Wu J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184 104-119 (2008).
-
(2008)
J. Power Sources
, vol.184
, pp. 104-119
-
-
Wu, J.1
-
30
-
-
65549087164
-
Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles
-
Shiau C.-S. N, Samaras C, Hauffe R, & Michalek J. J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37, 2653-2663 (2009).
-
(2009)
Energy Policy
, vol.37
, pp. 2653-2663
-
-
Shiau, C.-S.N.1
Samaras, C.2
Hauffe, R.3
Michalek, J.J.4
-
31
-
-
84929590319
-
Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates
-
Iwan A, Malinowski M, & Pasciak G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 49, 954-967 (2015).
-
(2015)
Renew. Sustain. Energy Rev
, vol.49
, pp. 954-967
-
-
Iwan, A.1
Malinowski, M.2
Pasciak, G.3
-
32
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò A. S, Bruce P, Scrosati B, Tarascon J.-M, & van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366-377 (2005).
-
(2005)
Nat. Mater
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
Van Schalkwijk, W.5
-
34
-
-
84898015362
-
Review on recent progress of nanostructured anode materials for Li-ion batteries
-
Goriparti S, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421-443 (2014).
-
(2014)
J. Power Sources
, vol.257
, pp. 421-443
-
-
Goriparti, S.1
-
35
-
-
84927920045
-
Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
-
Nie Y, Li L, & Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168-201 (2015).
-
(2015)
Chem. Soc. Rev
, vol.44
, pp. 2168-2201
-
-
Nie, Y.1
Li, L.2
Wei, Z.3
-
36
-
-
53549103883
-
Inorganic nanomaterials for batteries
-
Whittingham M. S. Inorganic nanomaterials for batteries. Dalton Trans. 2008, 5424-5431 (2008).
-
(2008)
Dalton Trans
, vol.2008
, pp. 5424-5431
-
-
Whittingham, M.S.1
-
37
-
-
84916613059
-
Ultimate limits to intercalation reactions for lithium batteries
-
Whittingham M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414-11443 (2014).
-
(2014)
Chem. Rev
, vol.114
, pp. 11414-11443
-
-
Whittingham, M.S.1
-
38
-
-
84916608418
-
Alloy negative electrodes for Li-ion batteries
-
Obrovac M. N, & Chevrier V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444-11502 (2014).
-
(2014)
Chem. Rev
, vol.114
, pp. 11444-11502
-
-
Obrovac, M.N.1
Chevrier, V.L.2
-
39
-
-
77249086655
-
Advanced materials for energy storage
-
Liu C, Li F, Ma L.-P, & Cheng H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28-E62 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. E28-E62
-
-
Liu, C.1
Li, F.2
Ma, L.-P.3
Cheng, H.-M.4
-
40
-
-
84898801617
-
Quantifying the promise of lithium-Air batteries for electric vehicles
-
Gallagher K. G, et al. Quantifying the promise of lithium-Air batteries for electric vehicles. Energy Environ. Sci. 7, 1555-1563 (2014).
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 1555-1563
-
-
Gallagher, K.G.1
-
45
-
-
84875144947
-
Green chemistry: Principles and practice
-
Anastas P. T, & Eghbali N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301-312 (2010).
-
(2010)
Chem. Soc. Rev
, vol.39
, pp. 301-312
-
-
Anastas, P.T.1
Eghbali, N.2
-
46
-
-
84894238033
-
Life cycle assessment of a lithium-ion battery vehicle pack
-
Ellingsen L. A.-W, et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113-124 (2014).
-
(2014)
J. Ind. Ecol
, vol.18
, pp. 113-124
-
-
Ellingsen, L.A.-W.1
-
47
-
-
84927767956
-
Li-ion battery materials: Present and future
-
Nitta N, Wu F, Lee J. T, & Yushin G. Li-ion battery materials: present and future. Mater. Today 18, 252-264 (2015).
-
(2015)
Mater. Today
, vol.18
, pp. 252-264
-
-
Nitta, N.1
Wu, F.2
Lee, J.T.3
Yushin, G.4
-
48
-
-
84861183867
-
History, evolution, and future status of energy storage
-
Whittingham M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518-1534 (2012).
-
(2012)
Proc. IEEE
, vol.100
, pp. 1518-1534
-
-
Whittingham, M.S.1
-
53
-
-
69449099213
-
Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating
-
Ohta N, Nagaoka K, Hoshi K, Bitoh S, & Inagaki M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194, 985-990 (2009).
-
(2009)
J. Power Sources
, vol.194
, pp. 985-990
-
-
Ohta, N.1
Nagaoka, K.2
Hoshi, K.3
Bitoh, S.4
Inagaki, M.5
-
54
-
-
84867022499
-
Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries
-
Latorre-Sanchez M, Primo A, & Garcia H. Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J. Mater. Chem. 22, 21373-21375 (2012).
-
(2012)
J. Mater. Chem
, vol.22
, pp. 21373-21375
-
-
Latorre-Sanchez, M.1
Primo, A.2
Garcia, H.3
-
55
-
-
84876239265
-
Carbon nanostructures in lithium ion batteries: Past, present, and future
-
Lahiri I, & Choi W. Carbon nanostructures in lithium ion batteries: past, present, and future. Crit. Rev. Solid State Mater. Sci. 38, 128-166 (2013).
-
(2013)
Crit. Rev. Solid State Mater. Sci
, vol.38
, pp. 128-166
-
-
Lahiri, I.1
Choi, W.2
-
57
-
-
84874606642
-
-
ESPI Metals accessed 22 April 2016
-
Material Safety Data Sheets (ESPI Metals, accessed 22 April 2016); www.espimetals.com/index.php/msds
-
Material Safety Data Sheets
-
-
-
58
-
-
84881368070
-
Life cycle energy and climate change implications of nanotechnologies
-
Kim H. C, & Fthenakis V. Life cycle energy and climate change implications of nanotechnologies. J. Ind. Ecol. 17, 528-541 (2013).
-
(2013)
J. Ind. Ecol
, vol.17
, pp. 528-541
-
-
Kim, H.C.1
Fthenakis, V.2
-
59
-
-
64349117608
-
Thermodynamic analysis of resources used in manufacturing processes
-
Gutowski T. G, et al. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 43, 1584-1590 (2009).
-
(2009)
Environ. Sci. Technol
, vol.43
, pp. 1584-1590
-
-
Gutowski, T.G.1
-
61
-
-
84873808704
-
Carbon nanotubes: Present and future commercial applications
-
De Volder M. F. L, Tawfick S. H, Baughman R. H, & Hart A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535-539 (2013).
-
(2013)
Science
, vol.339
, pp. 535-539
-
-
De Volder, M.F.L.1
Tawfick, S.H.2
Baughman, R.H.3
Hart, A.J.4
-
62
-
-
85006430755
-
Manufacturing nanomaterials: From research to industry
-
Charitidis C. A, Georgiou P, Koklioti M. A, Trompeta A.-F, & Markakis V. Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1, 11 (2014).
-
(2014)
Manuf. Rev
, vol.1
, pp. 11
-
-
Charitidis, C.A.1
Georgiou, P.2
Koklioti, M.A.3
Trompeta, A.-F.4
Markakis, V.5
-
63
-
-
84857510232
-
Toxicity of nanomaterials
-
Sharifi S, et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323-2343 (2012).
-
(2012)
Chem. Soc. Rev
, vol.41
, pp. 2323-2343
-
-
Sharifi, S.1
-
64
-
-
67650239336
-
Nanoparticles: Their potential toxicity, waste and environmental management
-
Bystrzejewska-Piotrowska G, Golimowski J, & Urban P. L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587-2595 (2009).
-
(2009)
Waste Manag
, vol.29
, pp. 2587-2595
-
-
Bystrzejewska-Piotrowska, G.1
Golimowski, J.2
Urban, P.L.3
-
65
-
-
38949108991
-
Studying the potential release of carbon nanotubes throughout the application life cycle
-
Köhler A. R, Som C, Helland A, & Gottschalk F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927-937 (2008).
-
(2008)
J. Clean. Prod
, vol.16
, pp. 927-937
-
-
Köhler, A.R.1
Som, C.2
Helland, A.3
Gottschalk, F.4
-
66
-
-
84929485471
-
Criticality of metals and metalloids
-
Graedel T. E, Harper E. M, Nassar N. T, Nuss P, & Reck B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257-4262 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 4257-4262
-
-
Graedel, T.E.1
Harper, E.M.2
Nassar, N.T.3
Nuss, P.4
Reck, B.K.5
-
67
-
-
84892561009
-
Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs
-
Lee W. W, & Lee J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589-1626 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 1589-1626
-
-
Lee, W.W.1
Lee, J.-M.2
-
68
-
-
84877687451
-
Metal oxides and oxysalts as anode materials for Li ion batteries
-
Reddy M. V, Subba Rao G. V, & Chowdari B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364-5457 (2013).
-
(2013)
Chem. Rev
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.3
-
69
-
-
84891364229
-
Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries
-
Ma Y, Ding B, Ji G, & Lee J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870-10878 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 10870-10878
-
-
Ma, Y.1
Ding, B.2
Ji, G.3
Lee, J.Y.4
-
72
-
-
84877798725
-
A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries
-
Gan L, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104, 117-123 (2013).
-
(2013)
Electrochim. Acta
, vol.104
, pp. 117-123
-
-
Gan, L.1
-
73
-
-
84881450968
-
Silicon nanowires for Li-based battery anodes: A review
-
Zamfir M. R, Nguyen H. T, Moyen E, Lee Y. H, & Pribat D. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1, 9566-9586 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 9566-9586
-
-
Zamfir, M.R.1
Nguyen, H.T.2
Moyen, E.3
Lee, Y.H.4
Pribat, D.5
-
74
-
-
73249151335
-
Lithium batteries: Status, prospects and future
-
Scrosati B, & Garche J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419-2430 (2010).
-
(2010)
J. Power Sources
, vol.195
, pp. 2419-2430
-
-
Scrosati, B.1
Garche, J.2
-
75
-
-
84891883895
-
Silicon-based nanomaterials for lithium-ion batteries: A review
-
Su X, et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1-23 (2014).
-
(2014)
Adv. Energy Mater
, vol.4
, pp. 1-23
-
-
Su, X.1
-
76
-
-
84861091085
-
Porous doped silicon nanowires for lithium ion battery anode with long cycle life
-
Ge M, Rong J, Fang X, & Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318-2323 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 2318-2323
-
-
Ge, M.1
Rong, J.2
Fang, X.3
Zhou, C.4
-
77
-
-
84856483134
-
Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material
-
Jia H, et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036-1039 (2011).
-
(2011)
Adv. Energy Mater
, vol.1
, pp. 1036-1039
-
-
Jia, H.1
-
82
-
-
85003697644
-
The anode challenge for lithium-ion batteries: A mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon
-
Dong Z, et al. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon. Adv. Sci. 3, 1-8 (2016).
-
(2016)
Adv. Sci
, vol.3
, pp. 1-8
-
-
Dong, Z.1
-
86
-
-
85002674812
-
-
SDS accessed 22 April 2016
-
SDS | LTS (LTS Chemical, accessed 22 April 2016); https://www.ltschem.com/msds/
-
LTS (LTS Chemical
-
-
-
90
-
-
80054975361
-
Quasiemulsion-Templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties
-
Wang B, Chen J. S, Wu H. B, Wang Z, & Lou X. W. Quasiemulsion-Templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146-17148 (2011).
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 17146-17148
-
-
Wang, B.1
Chen, J.S.2
Wu, H.B.3
Wang, Z.4
Lou, X.W.5
-
91
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: A review
-
Etacheri V, Marom R, Elazari R, Salitra G, & Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243-3262 (2011).
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
92
-
-
84928964316
-
Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: A case study of a novel Li-Mn-Ni-Co oxide
-
Li Q, et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li-Mn-Ni-Co oxide. J. Mater. Chem. A 3, 10592-10602 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 10592-10602
-
-
Li, Q.1
-
93
-
-
84940434983
-
Review on Li-sulfur battery systems: An integral perspective
-
Rosenman A, et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1-21 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1-21
-
-
Rosenman, A.1
-
94
-
-
83655183076
-
Li-O2 and Li-S batteries with high energy storage
-
Bruce P. G, Freunberger S. A, Hardwick L. J, & Tarascon J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
-
(2012)
Nat. Mater
, vol.11
, pp. 19-29
-
-
Bruce, P.G.1
Freunberger, S.A.2
Hardwick, L.J.3
Tarascon, J.-M.4
-
96
-
-
7644220712
-
Lithium batteries and cathode materials
-
Whittingham M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271-4301 (2004).
-
(2004)
Chem. Rev
, vol.104
, pp. 4271-4301
-
-
Whittingham, M.S.1
-
100
-
-
84940315999
-
Degradation and structural evolution of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling
-
Liu J, Wang R, & Xia Y. Degradation and structural evolution of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160-A167 (2013).
-
(2013)
J. Electrochem. Soc
, vol.161
, pp. A160-A167
-
-
Liu, J.1
Wang, R.2
Xia, Y.3
-
102
-
-
84876516045
-
High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries
-
Yu H, & Zhou H. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268-1280 (2013).
-
(2013)
J. Phys. Chem. Lett
, vol.4
, pp. 1268-1280
-
-
Yu, H.1
Zhou, H.2
-
103
-
-
84870039059
-
General synthesis of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries
-
Liu J, et al. General synthesis of xLi2MnO3(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380-25387 (2012).
-
(2012)
J. Mater. Chem
, vol.22
, pp. 25380-25387
-
-
Liu, J.1
-
104
-
-
84947258983
-
Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- and Mn-rich cathodes
-
Croy J. R, Balasubramanian M, Gallagher K. G, & Burrell A. K. Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- And Mn-rich cathodes. Acc. Chem. Res. 48, 2813-2821 (2015).
-
(2015)
Acc. Chem. Res
, vol.48
, pp. 2813-2821
-
-
Croy, J.R.1
Balasubramanian, M.2
Gallagher, K.G.3
Burrell, A.K.4
-
105
-
-
76249115189
-
Positive electrode materials for Li-ion and Li-batteries
-
Ellis B. L, Lee K. T, & Nazar L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691-714 (2010).
-
(2010)
Chem. Mater
, vol.22
, pp. 691-714
-
-
Ellis, B.L.1
Lee, K.T.2
Nazar, L.F.3
-
107
-
-
80055002182
-
Nanostructured electrodes for lithium-ion and lithium-Air batteries: The latest developments, challenges, and perspectives
-
Song M. K, Park S, Alamgir F. M, Cho J, & Liu M. Nanostructured electrodes for lithium-ion and lithium-Air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203-252 (2011).
-
(2011)
Mater. Sci. Eng. R Rep
, vol.72
, pp. 203-252
-
-
Song, M.K.1
Park, S.2
Alamgir, F.M.3
Cho, J.4
Liu, M.5
-
108
-
-
85017395613
-
Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review
-
Satyavani T. V. S. L, Srinivas Kumar A, & Subba Rao P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19, 178-188 (2015).
-
(2015)
Eng. Sci. Technol. Int. J
, vol.19
, pp. 178-188
-
-
Satyavani, T.V.S.L.1
Srinivas Kumar, A.2
Subba Rao, P.S.V.3
-
109
-
-
84962163301
-
Thermodynamics, kinetics and structural evolution of e-LiVOPO4 over multiple lithium intercalation
-
Lin Y.-C, et al. Thermodynamics, kinetics and structural evolution of e-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794-1805 (2015).
-
(2015)
Chem. Mater
, vol.28
, pp. 1794-1805
-
-
Lin, Y.-C.1
-
111
-
-
80052246206
-
Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries
-
Cheng F, et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4, 3668-3675 (2011).
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 3668-3675
-
-
Cheng, F.1
-
112
-
-
84940438601
-
A sulfur cathode with pomegranate-like cluster structure
-
Li W, et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).
-
(2015)
Adv Energy Mater
, vol.5
, pp. 1500211
-
-
Li, W.1
-
113
-
-
84940440670
-
Progress in mechanistic understanding and characterization techniques of Li-S batteries
-
Xu R, Lu J, & Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1-22 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1-22
-
-
Xu, R.1
Lu, J.2
Amine, K.3
-
114
-
-
84870917023
-
Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries
-
Cai K, Song M.-K, Cairns E. J, & Zhang Y. Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474-6479 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 6474-6479
-
-
Cai, K.1
Song, M.-K.2
Cairns, E.J.3
Zhang, Y.4
-
115
-
-
84930937041
-
Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery
-
Wu S, Ge R, Lu M, Xu R, & Zhang Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379-405 (2015).
-
(2015)
Nano Energy
, vol.15
, pp. 379-405
-
-
Wu, S.1
Ge, R.2
Lu, M.3
Xu, R.4
Zhang, Z.5
-
116
-
-
84940438122
-
Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries
-
Son Y, Lee J. S, Son Y, Jang J. H, & Cho J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1-14 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1-14
-
-
Son, Y.1
Lee, J.S.2
Son, Y.3
Jang, J.H.4
Cho, J.5
-
117
-
-
85027946537
-
Lithium-sulfur batteries: Progress and prospects
-
Manthiram A, Chung S.-H, & Zu C. Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27, 1980-2006 (2015).
-
(2015)
Adv. Mater
, vol.27
, pp. 1980-2006
-
-
Manthiram, A.1
Chung, S.-H.2
Zu, C.3
-
121
-
-
84897049321
-
Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells
-
Nan C, et al. Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659-4663 (2014).
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 4659-4663
-
-
Nan, C.1
-
122
-
-
84866478555
-
High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries
-
Yang Y, et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387-15394 (2012).
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 15387-15394
-
-
Yang, Y.1
-
123
-
-
84858337919
-
Development of a recycling process for Li-ion batteries
-
Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, & Rutz M. Development of a recycling process for Li-ion batteries. J. Power Sources 207, 173-182 (2012).
-
(2012)
J. Power Sources
, vol.207
, pp. 173-182
-
-
Georgi-Maschler, T.1
Friedrich, B.2
Weyhe, R.3
Heegn, H.4
Rutz, M.5
-
125
-
-
84898810767
-
A closed loop process for recycling spent lithium ion batteries
-
Gratz E, Sa Q, Apelian D, & Wang Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255-262 (2014).
-
(2014)
J. Power Sources
, vol.262
, pp. 255-262
-
-
Gratz, E.1
Sa, Q.2
Apelian, D.3
Wang, Y.4
-
126
-
-
38749105433
-
A review of processes and technologies for the recycling of lithium-ion secondary batteries
-
Xu J, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177 512-527 (2008).
-
(2008)
J. Power Sources
, vol.177
, pp. 512-527
-
-
Xu, J.1
-
127
-
-
77949913791
-
The importance of life cycle concepts for the development of safe nanoproducts
-
Som C, et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160-169 (2010).
-
(2010)
Toxicology
, vol.269
, pp. 160-169
-
-
Som, C.1
-
128
-
-
84938704853
-
A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes
-
Scofield M. E, Liu H, & Wong S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836-5860 (2015).
-
(2015)
Chem Soc. Rev
, vol.44
, pp. 5836-5860
-
-
Scofield, M.E.1
Liu, H.2
Wong, S.S.3
-
129
-
-
84919336417
-
Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction
-
Duan H, & Xu C. Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417-424 (2015).
-
(2015)
Electrochim. Acta
, vol.152
, pp. 417-424
-
-
Duan, H.1
Xu, C.2
-
130
-
-
80052192526
-
A review on non-precious metal electrocatalysts for PEM fuel cells
-
Chen Z, Higgins D, Yu A, Zhang L, & Zhang J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167-3192 (2011).
-
(2011)
Energy Environ Sci
, vol.4
, pp. 3167-3192
-
-
Chen, Z.1
Higgins, D.2
Yu, A.3
Zhang, L.4
Zhang, J.5
-
131
-
-
84962449139
-
Recent advances in electrocatalysts for oxygen reduction reaction
-
Shao M, Chang Q, Dodelet J.-P, & Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594-3657 (2016).
-
(2016)
Chem. Rev
, vol.116
, pp. 3594-3657
-
-
Shao, M.1
Chang, Q.2
Dodelet, J.-P.3
Chenitz, R.4
-
132
-
-
79953667003
-
Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
-
Morozan A, Jousselme B, & Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238-1254 (2011).
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 1238-1254
-
-
Morozan, A.1
Jousselme, B.2
Palacin, S.3
-
133
-
-
83455164520
-
High-performance nanofiber fuel cell electrodes
-
Zhang W, & Pintauro P. N. High-performance nanofiber fuel cell electrodes. ChemSusChem 4, 1753-1757 (2011).
-
(2011)
ChemSusChem
, vol.4
, pp. 1753-1757
-
-
Zhang, W.1
Pintauro, P.N.2
-
134
-
-
84923638574
-
Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes
-
Brodt M, et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes. J. Electrochem. Soc. 162, F84-F91 (2014).
-
(2014)
J. Electrochem. Soc
, vol.162
, pp. F84-F91
-
-
Brodt, M.1
-
135
-
-
84898074353
-
Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts
-
Alia S. M, et al. Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114-1119 (2014).
-
(2014)
ACS Catal
, vol.4
, pp. 1114-1119
-
-
Alia, S.M.1
-
136
-
-
84860724356
-
Advanced platinum alloy electrocatalysts for the oxygen reduction reaction
-
Wang C, Markovic N. M, & Stamenkovic V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891-898 (2012).
-
(2012)
ACS Catal
, vol.2
, pp. 891-898
-
-
Wang, C.1
Markovic, N.M.2
Stamenkovic, V.R.3
-
137
-
-
84880142104
-
Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction
-
Choi S.-I, et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420-3425 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 3420-3425
-
-
Choi, S.-I.1
-
138
-
-
84875176053
-
FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction
-
Guo S, et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465-3468 (2013).
-
(2013)
Angew. Chem. Int. Ed
, vol.52
, pp. 3465-3468
-
-
Guo, S.1
-
139
-
-
33750073562
-
Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications
-
Tseng C.-J, Lo S.-T, Lo S.-C, & Chu P. P. Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 100, 385-390 (2006).
-
(2006)
Mater. Chem. Phys
, vol.100
, pp. 385-390
-
-
Tseng, C.-J.1
Lo, S.-T.2
Lo, S.-C.3
Chu, P.P.4
-
140
-
-
84918799188
-
Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction
-
Liu J, et al. Impact of Cu-Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 152, 425-432 (2015).
-
(2015)
Electrochim. Acta
, vol.152
, pp. 425-432
-
-
Liu, J.1
-
141
-
-
84904390057
-
Life cycle assessment of metals: A scientific synthesis
-
Nuss P, & Eckelman M. J. Life cycle assessment of metals: a scientific synthesis. PLOS One 9, 1-12 (2014).
-
(2014)
PLOS One
, vol.9
, pp. 1-12
-
-
Nuss, P.1
Eckelman, M.J.2
-
142
-
-
79961183037
-
Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
-
Proietti E, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).
-
(2011)
Nat. Commun
, vol.2
, pp. 416
-
-
Proietti, E.1
-
143
-
-
84881521336
-
Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene-CNT self-Assembly for enhanced oxygen reduction activity in acid media
-
Choi C. H, Chung M. W, Jun Y. J, & Woo S. I. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene-CNT self-Assembly for enhanced oxygen reduction activity in acid media. RSC Adv. 3, 12417-12422 (2013).
-
(2013)
RSC Adv
, vol.3
, pp. 12417-12422
-
-
Choi, C.H.1
Chung, M.W.2
Jun, Y.J.3
Woo, S.I.4
-
144
-
-
84941624259
-
Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions
-
Wei Q, et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574-1602 (2015).
-
(2015)
Catalysts
, vol.5
, pp. 1574-1602
-
-
Wei, Q.1
-
145
-
-
84943537257
-
Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction
-
Zhan Y, et al. Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930-939 (2015).
-
(2015)
Carbon N.Y
, vol.95
, pp. 930-939
-
-
Zhan, Y.1
-
146
-
-
39149130682
-
A review of water flooding issues in the proton exchange membrane fuel cell
-
Li H, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178 103-117 (2008).
-
(2008)
J. Power Sources
, vol.178
, pp. 103-1170
-
-
Li, H.1
-
147
-
-
84904562579
-
Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction
-
Higgins D, et al. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 24, 4325-4336 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 4325-4336
-
-
Higgins, D.1
-
148
-
-
84940369713
-
Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review
-
Shahgaldi S, & Hamelin J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705-728 (2015).
-
(2015)
Carbon
, vol.94
, pp. 705-728
-
-
Shahgaldi, S.1
Hamelin, J.2
-
149
-
-
84857483713
-
Support materials for PEMFC and DMFC electrocatalysts - A review
-
Sharma S, & Pollet B. G. Support materials for PEMFC and DMFC electrocatalysts - A review. J. Power Sources 208, 96-119 (2012).
-
(2012)
J. Power Sources
, vol.208
, pp. 96-119
-
-
Sharma, S.1
Pollet, B.G.2
-
150
-
-
79951604336
-
Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells
-
Higgins D. C, Meza D, & Chen Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114, 21982-21988 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 21982-21988
-
-
Higgins, D.C.1
Meza, D.2
Chen, Z.3
-
151
-
-
84862318368
-
Cost effective cation exchange membranes: A review
-
Yee R. S. L, Rozendal R. A, Zhang K, & Ladewig B. P. Cost effective cation exchange membranes: a review. Chem. Eng. Res. Des. 90, 950-959 (2012).
-
(2012)
Chem. Eng. Res. des
, vol.90
, pp. 950-959
-
-
Yee, R.S.L.1
Rozendal, R.A.2
Zhang, K.3
Ladewig, B.P.4
-
152
-
-
69349095808
-
Influence of ammonia on the conductivity of Nafion membranes
-
Hongsirikarn K, Goodwin J. G, Greenway S, & Creager S. Influence of ammonia on the conductivity of Nafion membranes. J. Power Sources 195, 30-38 (2010).
-
(2010)
J. Power Sources
, vol.195
, pp. 30-38
-
-
Hongsirikarn, K.1
Goodwin, J.G.2
Greenway, S.3
Creager, S.4
-
153
-
-
79955476043
-
Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
-
Tripathi B. P, & Shahi V. K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945-979 (2011).
-
(2011)
Prog. Polym. Sci
, vol.36
, pp. 945-979
-
-
Tripathi, B.P.1
Shahi, V.K.2
-
154
-
-
84949114778
-
Review of advanced materials for proton exchange membrane fuel cells
-
Kraytsberg A, & Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303-7330 (2014).
-
(2014)
Energy Fuels
, vol.28
, pp. 7303-7330
-
-
Kraytsberg, A.1
Ein-Eli, Y.2
-
155
-
-
84875714336
-
Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid
-
Ballengee J. B, Haugen G. M, Hamrock S. J, & Pintauro P. N. Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J. Electrochem. Soc. 160, F429-F435 (2013).
-
(2013)
J. Electrochem. Soc
, vol.160
, pp. F429-F435
-
-
Ballengee, J.B.1
Haugen, G.M.2
Hamrock, S.J.3
Pintauro, P.N.4
-
156
-
-
84953239873
-
Development of ion conductive nanofibers for polymer electrolyte fuel cells
-
Tanaka M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 48, 51-58 (2015).
-
(2015)
Polym. J
, vol.48
, pp. 51-58
-
-
Tanaka, M.1
-
157
-
-
84894243097
-
New developments in proton conducting membranes for fuel cells
-
Wycisk R, Pintauro P. N, & Park J. W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 4, 71-78 (2014).
-
(2014)
Curr. Opin. Chem. Eng
, vol.4
, pp. 71-78
-
-
Wycisk, R.1
Pintauro, P.N.2
Park, J.W.3
-
158
-
-
80052988594
-
Composite fuel cell membranes from dual-nanofiber electrospun mats
-
Ballengee J. B, & Pintauro P. N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44, 7307-7314 (2011).
-
(2011)
Macromolecules
, vol.44
, pp. 7307-7314
-
-
Ballengee, J.B.1
Pintauro, P.N.2
-
159
-
-
84901916945
-
Recent advances in polybenzimidazole/phosphoric acid membranes for high-Temperature fuel cells
-
Subianto S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-Temperature fuel cells. Polym. Int. 63, 1134-1144 (2014).
-
(2014)
Polym. Int
, vol.63
, pp. 1134-1144
-
-
Subianto, S.1
-
161
-
-
79955469656
-
Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells
-
Jun Y, Zarrin H, Fowler M, & Chen Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 6073-6081 (2011).
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 6073-6081
-
-
Jun, Y.1
Zarrin, H.2
Fowler, M.3
Chen, Z.4
-
162
-
-
84941419128
-
Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC
-
Wang Y, Jin J, Yang S, Li G, & Qiao J. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 177, 181-189 (2015).
-
(2015)
Electrochim. Acta
, vol.177
, pp. 181-189
-
-
Wang, Y.1
Jin, J.2
Yang, S.3
Li, G.4
Qiao, J.5
-
163
-
-
77649267991
-
Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC
-
Chalkovaa E, et al. Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Trans. 25, 1141-1150 (2009).
-
(2009)
ECS Trans
, vol.25
, pp. 1141-1150
-
-
Chalkovaa, E.1
-
164
-
-
33846972256
-
Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell
-
Kalappa P, & Lee J.-H. Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym. Int. 56, 371-375 (2007).
-
(2007)
Polym. Int
, vol.56
, pp. 371-375
-
-
Kalappa, P.1
Lee, J.-H.2
-
165
-
-
84873025260
-
High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review
-
Chandan A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review. J. Power Sources 231, 264-278 (2013).
-
(2013)
J. Power Sources
, vol.231
, pp. 264-278
-
-
Chandan, A.1
-
166
-
-
79952835815
-
Highly ordered mesoporous Nafion membranes for fuel cells
-
Lu J, Lu S, & Jiang S. P. Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216-3218 (2011).
-
(2011)
Chem. Commun
, vol.47
, pp. 3216-3218
-
-
Lu, J.1
Lu, S.2
Jiang, S.P.3
-
167
-
-
80054928225
-
Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells
-
Zarrin H, Higgins D, Jun Y, Chen Z, & Fowler M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774-20781 (2011).
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 20774-20781
-
-
Zarrin, H.1
Higgins, D.2
Jun, Y.3
Chen, Z.4
Fowler, M.5
-
168
-
-
84940824611
-
Recovery of platinum group metal value via potassium iodide leaching
-
Patel A, & Dawson R. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy 157, 219-225 (2015).
-
(2015)
Hydrometallurgy
, vol.157
, pp. 219-225
-
-
Patel, A.1
Dawson, R.2
-
172
-
-
0036535477
-
Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells
-
Handley C, Brandon N. P, & Van Der Vorst R. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells. J. Power Sources 106, 344-352 (2002).
-
(2002)
J. Power Sources
, vol.106
, pp. 344-352
-
-
Handley, C.1
Brandon, N.P.2
Van Der Vorst, R.3
-
173
-
-
84871754077
-
Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells
-
Shiroishi H, et al. Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells. Electrochemistry 80, 898-903 (2012).
-
(2012)
Electrochemistry
, vol.80
, pp. 898-903
-
-
Shiroishi, H.1
-
174
-
-
77951021997
-
Recycling of membrane electrode assembly of PEMFC by acid processing
-
Xu F, Mu S, & Pan M. Recycling of membrane electrode assembly of PEMFC by acid processing. Int. J. Hydrogen Energy 35, 2976-2979 (2010).
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 2976-2979
-
-
Xu, F.1
Mu, S.2
Pan, M.3
|