-
1
-
-
84923315531
-
Learning to predict from crowdsourced data
-
Bi, W., Wang, L., Kwok, J. T., and Tu, Z. (2014). Learning to predict from crowdsourced data. In Uncertainty in Artificial Intelligence.
-
(2014)
Uncertainty in Artificial Intelligence
-
-
Bi, W.1
Wang, L.2
Kwok, J.T.3
Tu, Z.4
-
2
-
-
85002157103
-
Stan: A probabilistic programming language
-
Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P., and Riddell, A. (2015). Stan: a probabilistic programming language. Journal of Statistical Software.
-
(2015)
Journal of Statistical Software
-
-
Carpenter, B.1
Gelman, A.2
Hoffman, M.3
Lee, D.4
Goodrich, B.5
Betancourt, M.6
Brubaker, M.A.7
Guo, J.8
Li, P.9
Riddell, A.10
-
3
-
-
84908462138
-
-
Agency for Healthcare Research and Quality US
-
Dahabreh, I. J., Trikalinos, T. A., Lau, J., and Schmid, C. (2012). An Empirical Assessment of Bivariate Methods for Meta-Analysis of Test Accuracy. Agency for Healthcare Research and Quality (US).
-
(2012)
An Empirical Assessment of Bivariate Methods for Meta-Analysis of Test Accuracy
-
-
Dahabreh, I.J.1
Trikalinos, T.A.2
Lau, J.3
Schmid, C.4
-
4
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
Dawid, A. P. and Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the em algorithm. Applied statistics, pages 20-28.
-
(1979)
Applied Statistics
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
5
-
-
85002022542
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society. Series B (methodological), pages 1-38.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
84960156752
-
Early gains matter: A case for preferring generative over discriminative crowdsourcing models
-
Felt, P., Ringger, E., Seppi, K., Black, K., and Haertel, R. (2015). Early gains matter: A case for preferring generative over discriminative crowdsourcing models. In Conference of the North American Chapter of the Association for Computational Linguistics.
-
(2015)
Conference of the North American Chapter of the Association for Computational Linguistics
-
-
Felt, P.1
Ringger, E.2
Seppi, K.3
Black, K.4
Haertel, R.5
-
11
-
-
84961878125
-
A Bayesian framework for modeling human evaluations
-
Lakkaraju, H., Leskovec, J., Kleinberg, J., and Mullainathan, S. (2015). A Bayesian framework for modeling human evaluations. In Proceedings of the 2015 SIAM International Conference on Data Mining, pages 181-189.
-
(2015)
Proceedings of the 2015 SIAM International Conference on Data Mining
, pp. 181-189
-
-
Lakkaraju, H.1
Leskovec, J.2
Kleinberg, J.3
Mullainathan, S.4
-
13
-
-
84877752474
-
Variational inference for crowdsourcing
-
Liu, Q., Peng, J., and Ihler, A. T. (2012). Variational inference for crowdsourcing. In Advances in Neural Information Processing Systems, pages 692-700.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 692-700
-
-
Liu, Q.1
Peng, J.2
Ihler, A.T.3
-
15
-
-
77954196403
-
Pymc: Bayesian stochastic modelling in python
-
Patil, A., Huard, D., and Fonnesbeck, C. J. (2010). Pymc: Bayesian stochastic modelling in python. Journal of statistical software, 35(4):1.
-
(2010)
Journal of Statistical Software
, vol.35
, Issue.4
, pp. 1
-
-
Patil, A.1
Huard, D.2
Fonnesbeck, C.J.3
-
16
-
-
77951954464
-
Learning from crowds
-
Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., and Moy, L. (2010). Learning from crowds. Journal of Machine Learning Research, 11:1297-1322.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Valadez, G.H.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
17
-
-
24944498883
-
Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
-
Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M., and Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of clinical epidemiology, 58(10):982-990.
-
(2005)
Journal of Clinical Epidemiology
, vol.58
, Issue.10
, pp. 982-990
-
-
Reitsma, J.B.1
Glas, A.S.2
Rutjes, A.W.3
Scholten, R.J.4
Bossuyt, P.M.5
Zwinderman, A.H.6
-
19
-
-
84893070992
-
Dynamic Bayesian combination of multiple imperfect classifiers
-
Springer
-
Simpson, E., Roberts, S., Psorakis, I., and Smith, A. (2013). Dynamic Bayesian combination of multiple imperfect classifiers. In Decision Making and Imperfection, pages 1-35. Springer.
-
(2013)
Decision Making and Imperfection
, pp. 1-35
-
-
Simpson, E.1
Roberts, S.2
Psorakis, I.3
Smith, A.4
-
20
-
-
0003470083
-
-
MRC Biostatistics Unit, Cambridge
-
Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1995). Bugs: Bayesian inference using gibbs sampling, version 0.50. MRC Biostatistics Unit, Cambridge.
-
(1995)
Bugs: Bayesian Inference Using Gibbs Sampling, Version 0.50
-
-
Spiegelhalter, D.J.1
Thomas, A.2
Best, N.G.3
Gilks, W.R.4
-
21
-
-
84909581998
-
Community-based Bayesian aggregation models for crowdsourcing
-
ACM
-
Venanzi, M., Guiver, J., Kazai, G., Kohli, P., and Shokouhi, M. (2014). Community-based Bayesian aggregation models for crowdsourcing. In Proceedings of the 23rd international conference on World wide web, pages 155-164. ACM.
-
(2014)
Proceedings of the 23rd International Conference on World Wide Web
, pp. 155-164
-
-
Venanzi, M.1
Guiver, J.2
Kazai, G.3
Kohli, P.4
Shokouhi, M.5
-
22
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and TrendsR in Machine Learning, 1(1-2):1-305.
-
(2008)
Foundations and TrendsR in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
24
-
-
84965124410
-
On-the-job learning with Bayesian decision theory
-
Werling, K., Chaganty, A. T., Liang, P. S., and Manning, C. D. (2015). On-the-job learning with Bayesian decision theory. In Advances in Neural Information Processing Systems, pages 3447-3455.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3447-3455
-
-
Werling, K.1
Chaganty, A.T.2
Liang, P.S.3
Manning, C.D.4
-
25
-
-
84885771772
-
Galaxy zoo 2: Detailed morphological classifications for 304 122 galaxies from the sloan digital sky survey
-
Willett, K. W., Lintott, C. J., Bamford, S. P., Masters, K. L., Simmons, B. D., Casteels, K. R., Edmondson, E. M., Fortson, L. F., Kaviraj, S., Keel, W. C., et al. (2013). Galaxy zoo 2: detailed morphological classifications for 304 122 galaxies from the sloan digital sky survey. Monthly Notices of the Royal Astronomical Society, page stt1458.
-
(2013)
Monthly Notices of the Royal Astronomical Society
, pp. stt1458
-
-
Willett, K.W.1
Lintott, C.J.2
Bamford, S.P.3
Masters, K.L.4
Simmons, B.D.5
Casteels, K.R.6
Edmondson, E.M.7
Fortson, L.F.8
Kaviraj, S.9
Keel, W.C.10
|