메뉴 건너뛰기




Volumn , Issue , 2016, Pages 50-56

Resource management with deep reinforcement learning

Author keywords

[No Author keywords available]

Indexed keywords

DECISION MAKING; NATURAL RESOURCES MANAGEMENT; ONLINE SYSTEMS; RESOURCE ALLOCATION;

EID: 85002168868     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3005745.3005750     Document Type: Conference Paper
Times cited : (1013)

References (42)
  • 1
    • 84921357962 scopus 로고    scopus 로고
    • Terminator, http://www.imdb.com/title/tt0088247/.
    • Terminator
  • 4
    • 85076640925 scopus 로고    scopus 로고
    • Reoptimizing data parallel computing
    • San Jose, CA, USENIX
    • S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. Reoptimizing data parallel computing. In NSDI, pages 281-294, San Jose, CA, 2012. USENIX.
    • (2012) NSDI , pp. 281-294
    • Agarwal, S.1    Kandula, S.2    Bruno, N.3    Wu, M.-C.4    Stoica, I.5    Zhou, J.6
  • 9
    • 0001899658 scopus 로고    scopus 로고
    • Learning policies for partially observable environments: Scaling up
    • Morgan Kaufmann
    • A. R. Cassandra and L. P. Kaelbling. Learning policies for partially observable environments: Scaling up. In Machine Learning Proceedings 1995, page 362. Morgan Kaufmann, 2016.
    • (2016) Machine Learning Proceedings 1995 , pp. 362
    • Cassandra, A.R.1    Kaelbling, L.P.2
  • 10
    • 85069497682 scopus 로고    scopus 로고
    • Project adam: Building an efficient and scalable deep learning training system
    • Broomfield, CO, Oct, USENIX Association
    • T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep learning training system. In OSDI, pages 571-582, Broomfield, CO, Oct. 2014. USENIX Association.
    • (2014) OSDI , pp. 571-582
    • Chilimbi, T.1    Suzue, Y.2    Apacible, J.3    Kalyanaraman, K.4
  • 12
    • 84897791438 scopus 로고    scopus 로고
    • Quasar: Resource-efficient and qos-aware cluster management
    • New York, NY, USA, ACM
    • C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster management. ASPLOS'14, pages 127-144, New York, NY, USA, 2014. ACM.
    • (2014) ASPLOS'14 , pp. 127-144
    • Delimitrou, C.1    Kozyrakis, C.2
  • 13
    • 84967121175 scopus 로고    scopus 로고
    • Pcc: Re-architecting congestion control for consistent high performance
    • Oakland, CA, May, USENIX Association
    • M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. Pcc: Re-architecting congestion control for consistent high performance. In NSDI, pages 395-408, Oakland, CA, May 2015. USENIX Association.
    • (2015) NSDI , pp. 395-408
    • Dong, M.1    Li, Q.2    Zarchy, D.3    Godfrey, P.B.4    Schapira, M.5
  • 16
    • 85043238089 scopus 로고    scopus 로고
    • Dominant resource fairness: Fair allocation of multiple resource types
    • Berkeley, CA, USA, USENIX Association
    • A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource fairness: Fair allocation of multiple resource types. NSDI'11, pages 323-336, Berkeley, CA, USA, 2011. USENIX Association.
    • (2011) NSDI'11 , pp. 323-336
    • Ghodsi, A.1    Zaharia, M.2    Hindman, B.3    Konwinski, A.4    Shenker, S.5    Stoica, I.6
  • 17
    • 84907326145 scopus 로고    scopus 로고
    • Multi-resource packing for cluster schedulers
    • New York, NY, USA, ACM
    • R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing for cluster schedulers. SIGCOMM'14, pages 455-466, New York, NY, USA, 2014. ACM.
    • (2014) SIGCOMM'14 , pp. 455-466
    • Grandl, R.1    Ananthanarayanan, G.2    Kandula, S.3    Rao, S.4    Akella, A.5
  • 19
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using markov chains and their applications
    • W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, (1), 1970.
    • (1970) Biometrika , Issue.1
    • Hastings, W.K.1
  • 26
    • 0002228390 scopus 로고    scopus 로고
    • Optimizing production manufacturing using reinforcement learning
    • S. Mahadevan and G. Theocharous. Optimizing production manufacturing using reinforcement learning. In FLAIRS Conference, 1998.
    • (1998) FLAIRS Conference
    • Mahadevan, S.1    Theocharous, G.2
  • 27
    • 17444414191 scopus 로고    scopus 로고
    • Basis function adaptation in temporal difference reinforcement learning
    • I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, (1), 2005.
    • (2005) Annals of Operations Research , Issue.1
    • Menache, I.1    Mannor, S.2    Shimkin, N.3
  • 31
    • 0019909899 scopus 로고
    • State of the art - A survey of partially observable markov decision processes: Theory, models, and algorithms
    • G. E. Monahan. State of the art - a survey of partially observable markov decision processes: theory, models, and algorithms. Management Science, (1), 1982.
    • (1982) Management Science , Issue.1
    • Monahan, G.E.1
  • 35
    • 33750244274 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In NIPS, 1999.
    • (1999) NIPS
    • Sutton, R.S.1    McAllester, D.A.2    Singh, S.P.3    Mansour, Y.4
  • 37
    • 84883296107 scopus 로고    scopus 로고
    • TCP Ex machina: Computer-generated congestion control
    • K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-generated Congestion Control. In SIGCOMM, 2013.
    • (2013) SIGCOMM
    • Winstein, K.1    Balakrishnan, H.2
  • 38
    • 85002263047 scopus 로고    scopus 로고
    • Stochastic forecasts achieve high throughput and low delay over cellular networks
    • Lombard, IL, USENIX
    • K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic forecasts achieve high throughput and low delay over cellular networks. In NSDI, pages 459-471, Lombard, IL, 2013. USENIX.
    • (2013) NSDI , pp. 459-471
    • Winstein, K.1    Sivaraman, A.2    Balakrishnan, H.3
  • 39
    • 84986631098 scopus 로고    scopus 로고
    • Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction
    • New York, NY, USA, ACM
    • S. Yi, Y. Xiaoqi, J. Junchen, S. Vyas, L. Fuyuan, W. Nanshu, L. Tao, and B. Sinopoli. Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction. SIGCOMM, New York, NY, USA, 2016. ACM.
    • (2016) SIGCOMM
    • Yi, S.1    Xiaoqi, Y.2    Junchen, J.3    Vyas, S.4    Fuyuan, L.5    Nanshu, W.6    Tao, L.7    Sinopoli, B.8
  • 40
    • 85002267052 scopus 로고    scopus 로고
    • Via: Improving internet telephony call quality using predictive relay selection
    • X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. Via: Improving internet telephony call quality using predictive relay selection. In SIGCOMM, SIGCOMM'16, 2016.
    • (2016) SIGCOMM, SIGCOMM'16
    • Yin, X.1    Jindal, A.2    Sekar, V.3    Sinopoli, B.4
  • 41
    • 77954636142 scopus 로고    scopus 로고
    • Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling
    • M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In EuroSys, 2010.
    • (2010) EuroSys
    • Zaharia, M.1    Borthakur, D.2    Sen Sarma, J.3    Elmeleegy, K.4    Shenker, S.5    Stoica, I.6
  • 42
    • 84918834208 scopus 로고
    • A reinforcement learning approach to job-shop scheduling
    • W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling. In IJCAI. Citeseer, 1995.
    • (1995) IJCAI. Citeseer
    • Zhang, W.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.