-
1
-
-
84921357962
-
-
Terminator, http://www.imdb.com/title/tt0088247/.
-
Terminator
-
-
-
2
-
-
85010814719
-
Tensorflow: Large-scale machine learning on heterogeneous systems, 2015
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org, 2015.
-
(2015)
Software
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
3
-
-
84864030941
-
An application of reinforcement learning to aerobatic helicopter flight
-
P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to aerobatic helicopter flight. Advances in neural information processing systems, page 1, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 1
-
-
Abbeel, P.1
Coates, A.2
Quigley, M.3
Ng, A.Y.4
-
4
-
-
85076640925
-
Reoptimizing data parallel computing
-
San Jose, CA, USENIX
-
S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. Reoptimizing data parallel computing. In NSDI, pages 281-294, San Jose, CA, 2012. USENIX.
-
(2012)
NSDI
, pp. 281-294
-
-
Agarwal, S.1
Kandula, S.2
Bruno, N.3
Wu, M.-C.4
Stoica, I.5
Zhou, J.6
-
5
-
-
79960166230
-
Reining in the outliers in map-reduce clusters using mantri
-
G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters using mantri. In OSDI, number 1, page 24, 2010.
-
(2010)
OSDI
, Issue.1
, pp. 24
-
-
Ananthanarayanan, G.1
Kandula, S.2
Greenberg, A.G.3
Stoica, I.4
Lu, Y.5
Saha, B.6
Harris, E.7
-
6
-
-
77950347409
-
A view of cloud computing
-
M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM, (4), 2010.
-
(2010)
Communications of the ACM
, Issue.4
-
-
Armbrust, M.1
Fox, A.2
Griffith, R.3
Joseph, A.D.4
Katz, R.5
Konwinski, A.6
Lee, G.7
Patterson, D.8
Rabkin, A.9
Stoica, I.10
-
9
-
-
0001899658
-
Learning policies for partially observable environments: Scaling up
-
Morgan Kaufmann
-
A. R. Cassandra and L. P. Kaelbling. Learning policies for partially observable environments: Scaling up. In Machine Learning Proceedings 1995, page 362. Morgan Kaufmann, 2016.
-
(2016)
Machine Learning Proceedings 1995
, pp. 362
-
-
Cassandra, A.R.1
Kaelbling, L.P.2
-
10
-
-
85069497682
-
Project adam: Building an efficient and scalable deep learning training system
-
Broomfield, CO, Oct, USENIX Association
-
T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep learning training system. In OSDI, pages 571-582, Broomfield, CO, Oct. 2014. USENIX Association.
-
(2014)
OSDI
, pp. 571-582
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
12
-
-
84897791438
-
Quasar: Resource-efficient and qos-aware cluster management
-
New York, NY, USA, ACM
-
C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster management. ASPLOS'14, pages 127-144, New York, NY, USA, 2014. ACM.
-
(2014)
ASPLOS'14
, pp. 127-144
-
-
Delimitrou, C.1
Kozyrakis, C.2
-
13
-
-
84967121175
-
Pcc: Re-architecting congestion control for consistent high performance
-
Oakland, CA, May, USENIX Association
-
M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. Pcc: Re-architecting congestion control for consistent high performance. In NSDI, pages 395-408, Oakland, CA, May 2015. USENIX Association.
-
(2015)
NSDI
, pp. 395-408
-
-
Dong, M.1
Li, Q.2
Zarchy, D.3
Godfrey, P.B.4
Schapira, M.5
-
14
-
-
84860561660
-
Jockey: Guaranteed job latency in data parallel clusters
-
ACM
-
A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: guaranteed job latency in data parallel clusters. In Proceedings of the 7th ACM european conference on Computer Systems. ACM, 2012.
-
(2012)
Proceedings of the 7th ACM European Conference on Computer Systems
-
-
Ferguson, A.D.1
Bodik, P.2
Kandula, S.3
Boutin, E.4
Fonseca, R.5
-
16
-
-
85043238089
-
Dominant resource fairness: Fair allocation of multiple resource types
-
Berkeley, CA, USA, USENIX Association
-
A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource fairness: Fair allocation of multiple resource types. NSDI'11, pages 323-336, Berkeley, CA, USA, 2011. USENIX Association.
-
(2011)
NSDI'11
, pp. 323-336
-
-
Ghodsi, A.1
Zaharia, M.2
Hindman, B.3
Konwinski, A.4
Shenker, S.5
Stoica, I.6
-
17
-
-
84907326145
-
Multi-resource packing for cluster schedulers
-
New York, NY, USA, ACM
-
R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing for cluster schedulers. SIGCOMM'14, pages 455-466, New York, NY, USA, 2014. ACM.
-
(2014)
SIGCOMM'14
, pp. 455-466
-
-
Grandl, R.1
Ananthanarayanan, G.2
Kandula, S.3
Rao, S.4
Akella, A.5
-
19
-
-
77956890234
-
Monte carlo sampling methods using markov chains and their applications
-
W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, (1), 1970.
-
(1970)
Biometrika
, Issue.1
-
-
Hastings, W.K.1
-
20
-
-
84885109587
-
Elastictree: Saving energy in data center networks
-
Berkeley, CA, USA, USENIX Association
-
B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center networks. NSDI'10, Berkeley, CA, USA, 2010. USENIX Association.
-
(2010)
NSDI'10
-
-
Heller, B.1
Seetharaman, S.2
Mahadevan, P.3
Yiakoumis, Y.4
Sharma, P.5
Banerjee, S.6
McKeown, N.7
-
22
-
-
72249118633
-
Quincy: Fair scheduling for distributed computing clusters
-
M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: fair scheduling for distributed computing clusters. In ACM SIGOPS, 2009.
-
(2009)
ACM SIGOPS
-
-
Isard, M.1
Prabhakaran, V.2
Currey, J.3
Wieder, U.4
Talwar, K.5
Goldberg, A.6
-
23
-
-
85002426842
-
A control-theoretic approach for dynamic adaptive video streaming over http
-
New York, NY, USA, ACM
-
J. Junchen, D. Rajdeep, A. Ganesh, C. Philip, P. Venkata, S. Vyas, D. Esbjorn, G. Marcin, K. Dalibor, V. Renat, and Z. Hui. A control-theoretic approach for dynamic adaptive video streaming over http. SIGCOMM'15, New York, NY, USA, 2015. ACM.
-
(2015)
SIGCOMM'15
-
-
Junchen, J.1
Rajdeep, D.2
Ganesh, A.3
Philip, C.4
Venkata, P.5
Vyas, S.6
Esbjorn, D.7
Marcin, G.8
Dalibor, K.9
Renat, V.10
Hui, Z.11
-
26
-
-
0002228390
-
Optimizing production manufacturing using reinforcement learning
-
S. Mahadevan and G. Theocharous. Optimizing production manufacturing using reinforcement learning. In FLAIRS Conference, 1998.
-
(1998)
FLAIRS Conference
-
-
Mahadevan, S.1
Theocharous, G.2
-
27
-
-
17444414191
-
Basis function adaptation in temporal difference reinforcement learning
-
I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, (1), 2005.
-
(2005)
Annals of Operations Research
, Issue.1
-
-
Menache, I.1
Mannor, S.2
Shimkin, N.3
-
28
-
-
84971448181
-
-
CoRR
-
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. CoRR, 2016.
-
(2016)
Asynchronous Methods for Deep Reinforcement Learning
-
-
Mnih, V.1
Badia, A.P.2
Mirza, M.3
Graves, A.4
Lillicrap, T.P.5
Harley, T.6
Silver, D.7
Kavukcuoglu, K.8
-
29
-
-
84904867557
-
-
CoRR
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR, 2013.
-
(2013)
Playing Atari with Deep Reinforcement Learning
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Graves, A.4
Antonoglou, I.5
Wierstra, D.6
Riedmiller, M.A.7
-
30
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. H. I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Human-level control through deep reinforcement learning. Nature, 2015.
-
(2015)
Nature
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
Petersen, S.11
Beattie, C.12
Sadik, A.13
Antonoglou, I.14
King, H.15
Kumaran, D.16
Wierstra, D.17
Legg, S.18
Antonoglou, D.H.I.19
Wierstra, D.20
Riedmiller, M.A.21
more..
-
31
-
-
0019909899
-
State of the art - A survey of partially observable markov decision processes: Theory, models, and algorithms
-
G. E. Monahan. State of the art - a survey of partially observable markov decision processes: theory, models, and algorithms. Management Science, (1), 1982.
-
(1982)
Management Science
, Issue.1
-
-
Monahan, G.E.1
-
32
-
-
84965149509
-
-
CoRR, abs/1502.05477
-
J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015.
-
(2015)
Trust Region Policy Optimization
-
-
Schulman, J.1
Levine, S.2
Moritz, P.3
Jordan, M.I.4
Abbeel, P.5
-
33
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershevlvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 2016.
-
(2016)
Nature
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershevlvam, V.9
Lanctot, M.10
Dieleman, S.11
Grewe, D.12
Nham, J.13
Kalchbrenner, N.14
Sutskever, I.15
Lillicrap, T.16
Leach, M.17
Kavukcuoglu, K.18
Graepel, T.19
Hassabis, D.20
more..
-
35
-
-
33750244274
-
Policy gradient methods for reinforcement learning with function approximation
-
R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In NIPS, 1999.
-
(1999)
NIPS
-
-
Sutton, R.S.1
McAllester, D.A.2
Singh, S.P.3
Mansour, Y.4
-
36
-
-
84893249524
-
Apache hadoop yarn: Yet another resource negotiator
-
New York, NY, USA, ACM
-
V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O'Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. SOCC'13, pages 5:1-5:16, New York, NY, USA, 2013. ACM.
-
(2013)
SOCC'13
, pp. 51-516
-
-
Vavilapalli, V.K.1
Murthy, A.C.2
Douglas, C.3
Agarwal, S.4
Konar, M.5
Evans, R.6
Graves, T.7
Lowe, J.8
Shah, H.9
Seth, S.10
Saha, B.11
Curino, C.12
O'Malley, O.13
Radia, S.14
Reed, B.15
Baldeschwieler, E.16
-
37
-
-
84883296107
-
TCP Ex machina: Computer-generated congestion control
-
K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-generated Congestion Control. In SIGCOMM, 2013.
-
(2013)
SIGCOMM
-
-
Winstein, K.1
Balakrishnan, H.2
-
38
-
-
85002263047
-
Stochastic forecasts achieve high throughput and low delay over cellular networks
-
Lombard, IL, USENIX
-
K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic forecasts achieve high throughput and low delay over cellular networks. In NSDI, pages 459-471, Lombard, IL, 2013. USENIX.
-
(2013)
NSDI
, pp. 459-471
-
-
Winstein, K.1
Sivaraman, A.2
Balakrishnan, H.3
-
39
-
-
84986631098
-
Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction
-
New York, NY, USA, ACM
-
S. Yi, Y. Xiaoqi, J. Junchen, S. Vyas, L. Fuyuan, W. Nanshu, L. Tao, and B. Sinopoli. Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction. SIGCOMM, New York, NY, USA, 2016. ACM.
-
(2016)
SIGCOMM
-
-
Yi, S.1
Xiaoqi, Y.2
Junchen, J.3
Vyas, S.4
Fuyuan, L.5
Nanshu, W.6
Tao, L.7
Sinopoli, B.8
-
40
-
-
85002267052
-
Via: Improving internet telephony call quality using predictive relay selection
-
X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. Via: Improving internet telephony call quality using predictive relay selection. In SIGCOMM, SIGCOMM'16, 2016.
-
(2016)
SIGCOMM, SIGCOMM'16
-
-
Yin, X.1
Jindal, A.2
Sekar, V.3
Sinopoli, B.4
-
41
-
-
77954636142
-
Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling
-
M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In EuroSys, 2010.
-
(2010)
EuroSys
-
-
Zaharia, M.1
Borthakur, D.2
Sen Sarma, J.3
Elmeleegy, K.4
Shenker, S.5
Stoica, I.6
-
42
-
-
84918834208
-
A reinforcement learning approach to job-shop scheduling
-
W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling. In IJCAI. Citeseer, 1995.
-
(1995)
IJCAI. Citeseer
-
-
Zhang, W.1
Dietterich, T.G.2
|