-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, DC
-
Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD Conference, Washington, DC (pp. 207–216).
-
(1993)
In Proceedings of the ACM SIGMOD Conference
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
0034186912
-
Dynamic self-organizing maps with controlled growth for knowledge discovery
-
Alahakoon, D., Halgamuge, S. K., & Srinivasan, B. (2000). Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks, Special Issue on Knowledge Discovery and Data Mining, 11(3), 601–614.
-
(2000)
IEEE Transactions on Neural Networks, Special Issue on Knowledge Discovery and Data Mining
, vol.11
, Issue.3
, pp. 601-614
-
-
Alahakoon, D.1
Halgamuge, S.K.2
Srinivasan, B.3
-
5
-
-
33646875947
-
Data mining from 1994–2004: An application-oriented review
-
Chen, S. Y., & Liu, X. (2005). Data mining from 1994–2004: An application-oriented review. International Journal of Business Intelligence and Data Mining, 1(1), 4–21.
-
(2005)
International Journal of Business Intelligence and Data Mining
, vol.1
, Issue.1
, pp. 4-21
-
-
Chen, S.Y.1
Liu, X.2
-
6
-
-
0003641269
-
-
Menlo Park, CA: AAAI/MIT Press
-
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (Eds.). (1996). Advances in knowledge discovery and data mining. Menlo Park, CA: AAAI/MIT Press.
-
(1996)
Advances in knowledge discovery and data mining
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
Uthurusamy, R.4
-
7
-
-
0002108653
-
Aggregate-query processing in data warehousing environment
-
Zurich, Switzerland
-
Gupta, A., Harinarayan, V., & Quass, D. (1995). Aggregate-query processing in data warehousing environment.In Proceedings of the 21st International Conference on Very Large Data Bases, Zurich, Switzerland (pp. 358–369).
-
(1995)
In Proceedings of the 21st International Conference on Very Large Data Bases
, pp. 358-369
-
-
Gupta, A.1
Harinarayan, V.2
Quass, D.3
-
8
-
-
0027542839
-
Data-driven discovery of quantitative rules in relational databases. IEEE Trans
-
Han, J., Cai, Y., & Cercone, N. (1993). Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Engineering, 5, 29–40.
-
(1993)
Knowledge and Data Engineering
, vol.5
, pp. 29-40
-
-
Han, J.1
Cai, Y.2
Cercone, N.3
-
10
-
-
0030157475
-
Implementing data cubes efficiently
-
Montreal, Canada
-
Harinarayan, V., Ullman, J. D., & Rajaraman, A. (1996). Implementing data cubes efficiently. In Proceedings of the 1996 ACM SIGMOD International Conference on Management Data (pp. 205–216), Montreal, Canada.
-
(1996)
In Proceedings of the 1996 ACM SIGMOD International Conference on Management Data
, pp. 205-216
-
-
Harinarayan, V.1
Ullman, J.D.2
Rajaraman, A.3
-
11
-
-
33744474079
-
Temporal rule induction for clinical outcome analysis
-
Hu, X., Song, Il-Y., Han, H., Yoo, I., Prestrud, A. A., Brennan, M. F., et al. (2005). Temporal rule induction for clinical outcome analysis. International Journal of Business Intelligence and Data Mining, 1(1), 122–136.
-
(2005)
International Journal of Business Intelligence and Data Mining
, vol.1
, Issue.1
, pp. 122-136
-
-
Hu, X.1
Song, I.-Y.2
Han, H.3
Yoo, I.4
Prestrud, A.A.5
Brennan, M.F.6
-
12
-
-
2442719356
-
Expanding self-organizing map for data visualization and cluster analysis
-
Jin, H.-D., Shum, W.-H., Leung, K.-S., & Wong, M.-L. (2004). Expanding self-organizing map for data visualization and cluster analysis. Information Sciences, 163(1–3), 157–173.
-
(2004)
Information Sciences
, vol.163
, Issue.1-3
, pp. 157-173
-
-
Jin, H.-D.1
Shum, W.-H.2
Leung, K.-S.3
Wong, M.-L.4
-
13
-
-
30944432347
-
Unsupervised class discovery and feature selection using an improved hierarchical dynamic self-organizing map
-
Kaggalage, R., Halgamuge, S., & Hsu, A. L. C. (2004). Unsupervised class discovery and feature selection using an improved hierarchical dynamic self-organizing map. Neural Information Processing - Letters and Reviews, 3(1), 1–10.
-
(2004)
Neural Information Processing - Letters and Reviews
, vol.3
, Issue.1
, pp. 1-10
-
-
Kaggalage, R.1
Halgamuge, S.2
Hsu, A.L.C.3
-
16
-
-
84976830511
-
An effective hash based algorithm for mining association rules
-
San Jose, CA
-
Par, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash based algorithm for mining association rules. In Proceedings of the ACM SIGMOD, San Jose, CA (pp. 175–186).
-
(1995)
In Proceedings of the ACM SIGMOD
, pp. 175-186
-
-
Par, J.S.1
Chen, M.S.2
Yu, P.S.3
-
17
-
-
0002877253
-
Discovery, analysis, and presentation of strong rule
-
In G. Piatetsky-Shapiro, & W. J. Frawley (Eds.) Boston: AAAI/MIT Press
-
Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rule. In G. Piatetsky-Shapiro, & W. J. Frawley (Eds.), Knowledge discovery in databases (pp. 229–238). Boston: AAAI/MIT Press.
-
(1991)
Knowledge discovery in databases
, pp. 229-238
-
-
Piatetsky-Shapiro, G.1
-
22
-
-
85001754618
-
Mining association rules in data warehouses
-
Tjioe, H. E., & Taniar, D. (2005). Mining association rules in data warehouses. International Journal of Data Warehousing and Mining, 1(3), 28–62.
-
(2005)
International Journal of Data Warehousing and Mining
, vol.1
, Issue.3
, pp. 28-62
-
-
Tjioe, H.E.1
Taniar, D.2
-
23
-
-
85001652606
-
Weka 3
-
Retrieved December 2004, from http://www.cs.waikato.ac.nz/ml/ weka
-
Weka 3: Data mining software in Java (n.d.). Retrieved December 2004, from http://www.cs.waikato.ac.nz/ml/ weka
-
Data mining software in Java (n.d.)
-
-
|