메뉴 건너뛰기




Volumn 1, Issue 1, 2005, Pages 57-81

Fuzzy Miner: Extracting Fuzzy Rules from Numerical Patterns

Author keywords

data mining; fuzzy logic; fuzzy rules; numerical patterns; pattern classification

Indexed keywords


EID: 85001716972     PISSN: 15483924     EISSN: 15483932     Source Type: Journal    
DOI: 10.4018/jdwm.2005010103     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 0028401306 scopus 로고
    • Casebased reasoning: Foundational issues, methodological variations, and system approaches
    • Aamodt, A., & Plazas, E. (1994). Casebased reasoning: Foundational issues, methodological variations, and system approaches. AI Comm., 7, 39–52.
    • (1994) AI Comm , vol.7 , pp. 39-52
    • Aamodt, A.1    Plazas, E.2
  • 2
    • 84898225699 scopus 로고    scopus 로고
    • Retrieved March 26, 2004: http://www.ase.gr/content/en/MarketData/Stocks/Prices/default.asp
    • ASE (2004). The Athens Stock Exchange closing prices. Retrieved March 26, 2004: http://www.ase.gr/content/en/MarketData/Stocks/Prices/default.asp
    • (2004) The Athens Stock Exchange closing prices
  • 9
    • 0003849485 scopus 로고
    • Learning control system by a simplified fuzzy reasoning model
    • Ichihashi, H. & Watanabe, T. (1990). Learning control system by a simplified fuzzy reasoning model. Proceedings of IPMU'90, (pp. 417–419).
    • (1990) Proceedings of IPMU'90 , pp. 417-419
    • Ichihashi, H.1    Watanabe, T.2
  • 11
    • 0026989504 scopus 로고
    • Fuzzy systems as universal approximators
    • Kosko, B. (1992). Fuzzy systems as universal approximators. Proceedings of FUZZ-IEEE '92, (pp. 1153–1162).
    • (1992) Proceedings of FUZZ-IEEE '92 , pp. 1153-1162
    • Kosko, B.1
  • 13
    • 0012978034 scopus 로고    scopus 로고
    • Probabilistic rough classifiers with mixture of discrete and continuous variables
    • In T.Y. Lin & N. Cercone (Eds.) Kluwer Academic Publishers
    • Lenarcik, A. & Piasta, Z. (1997). Probabilistic rough classifiers with mixture of discrete and continuous variables. In T.Y. Lin & N. Cercone (Eds.), Rough Sets and Data Mining: Analysis for Imprecise Data (pp. 373–383). Kluwer Academic Publishers.
    • (1997) Rough Sets and Data Mining: Analysis for Imprecise Data , pp. 373-383
    • Lenarcik, A.1    Piasta, Z.2
  • 14
  • 19
    • 0026998481 scopus 로고
    • A learning method of fuzzy inference rules by descent method
    • Nomura, H., Hayashi, I., & Wakami, N. (1992). A learning method of fuzzy inference rules by descent method. In Proceedings of FUZZ-IEEE '92, (pp. 203–210).
    • (1992) In Proceedings of FUZZ-IEEE '92 , pp. 203-210
    • Nomura, H.1    Hayashi, I.2    Wakami, N.3
  • 20
    • 0000864293 scopus 로고    scopus 로고
    • A simple but powerful heuristic method for generating fuzzy rules from numerical data
    • Nozzaki, K., Ishibuchi, H., & Tanaka, H. (1997). A simple but powerful heuristic method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems 86, 251–270.
    • (1997) Fuzzy Sets and Systems , vol.86 , pp. 251-270
    • Nozzaki, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 23
    • 24344499621 scopus 로고    scopus 로고
    • Fuzzy Miner: A fuzzy system for solving pattern classification problems
    • Retrieved June 15, 2004: http://users.forthnet.gr/ath/pele/HOME_PAGE_NIKOS_PELEKIS/Download/
    • Pelekis, N. (1999). Fuzzy Miner: A fuzzy system for solving pattern classification problems. M.Sc. Thesis, UMIST. Retrieved June 15, 2004: http://users.forthnet.gr/ath/pele/HOME_PAGE_NIKOS_PELEKIS/Download/
    • (1999) M.Sc. Thesis, UMIST
    • Pelekis, N.1
  • 24
    • 0037457713 scopus 로고    scopus 로고
    • Gauge groups and data classification
    • Prabhu, N. (2003). Gauge groups and data classification. Applied mathematics and computation, 138(2–3), 267–289.
    • (2003) Applied mathematics and computation , vol.138 , Issue.2-3 , pp. 267-289
    • Prabhu, N.1
  • 26
    • 45449126257 scopus 로고    scopus 로고
    • Structure identification of fuzzy model
    • Sugeno, M. & Kang, G.T. (1998). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28, 15–33.
    • (1998) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 27
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling. IEEE Trans
    • Sugeno, M. & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Systems, 1, 7–31.
    • (1993) Fuzzy Systems , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 28
    • 6344239920 scopus 로고    scopus 로고
    • Rough sets and principal component analysis and their applications in future extraction and selection, data model building and classification
    • In S. Pal & A. Skowron (Eds.) Springer-Verlag
    • Swiniarski, R. (1998). Rough sets and principal component analysis and their applications in future extraction and selection, data model building and classification. In S. Pal & A. Skowron (Eds.),Fuzzy Sets, Rough Sets and Decision Making Processes. Springer-Verlag.
    • (1998) Fuzzy Sets, Rough Sets and Decision Making Processes
    • Swiniarski, R.1
  • 30
    • 0026994365 scopus 로고
    • Fuzzy systems as universal approximators
    • Wang, L.X. (1992). Fuzzy systems as universal approximators. In Proceedings of FUZZ-IEEE'92, (pp. 1163–1170).
    • (1992) In Proceedings of FUZZ-IEEE'92 , pp. 1163-1170
    • Wang, L.X.1
  • 31
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples. IEEE Trans
    • Wang, L.X. & Mendel, J.M. (1992). Generating fuzzy rules by learning from examples. IEEE Trans. Systems, Man Cybernet, 22, 1414–1427.
    • (1992) Systems, Man Cybernet , vol.22 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.