메뉴 건너뛰기




Volumn 3, Issue 6, 2016, Pages 1241-1253

Overcoming implementation barriers for nanotechnology in drinking water treatment

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85000501898     PISSN: 20518153     EISSN: 20518161     Source Type: Journal    
DOI: 10.1039/c6en00183a     Document Type: Review
Times cited : (131)

References (115)
  • 1
    • 84894143346 scopus 로고    scopus 로고
    • Et al., Nanotechnology-Based Water Treatment Strategies
    • S. Kumar et al., Nanotechnology-Based Water Treatment Strategies J. Nanosci. Nanotechnol. 2014 14 2 1838 1858
    • (2014) J. Nanosci. Nanotechnol. , vol.14 , Issue.2 , pp. 1838-1858
    • Kumar, S.1
  • 2
    • 84879158907 scopus 로고    scopus 로고
    • Applications of nanotechnology in water and wastewater treatment
    • X. Qu P. J. J. Alvarez Q. Li Applications of nanotechnology in water and wastewater treatment Water Res. 2013 47 12 3931 3946
    • (2013) Water Res. , vol.47 , Issue.12 , pp. 3931-3946
    • Qu, X.1    Alvarez, P.J.J.2    Li, Q.3
  • 3
    • 84947742595 scopus 로고    scopus 로고
    • Et al., Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability
    • A. S. Adeleye et al., Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability Chem. Eng. J. 2016 286 640 662
    • (2016) Chem. Eng. J. , vol.286 , pp. 640-662
    • Adeleye, A.S.1
  • 4
    • 77956206256 scopus 로고    scopus 로고
    • Water purification using magnetic assistance: A review
    • R. D. Ambashta M. Sillanpaa Water purification using magnetic assistance: A review J. Hazard. Mater. 2010 180 1-3 38 49
    • (2010) J. Hazard. Mater. , vol.180 , Issue.13 , pp. 38-49
    • Ambashta, R.D.1    Sillanpaa, M.2
  • 5
    • 84957846073 scopus 로고    scopus 로고
    • Perspectives and applications of nanotechnology in water treatment
    • S. Baruah M. N. Khan J. Dutta Perspectives and applications of nanotechnology in water treatment Environ. Chem. Lett. 2016 14 1 1 14
    • (2016) Environ. Chem. Lett. , vol.14 , Issue.1 , pp. 1-14
    • Baruah, S.1    Khan, M.N.2    Dutta, J.3
  • 6
    • 84864248640 scopus 로고    scopus 로고
    • Et al., A review on nanomaterials for environmental remediation
    • M. M. Khin et al., A review on nanomaterials for environmental remediation Energy Environ. Sci. 2012 5 8 8075 8109
    • (2012) Energy Environ. Sci. , vol.5 , Issue.8 , pp. 8075-8109
    • Khin, M.M.1
  • 7
    • 77955515570 scopus 로고    scopus 로고
    • The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment
    • J. Kim B. Van der Bruggen The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment Environ. Pollut. 2010 158 7 2335 2349
    • (2010) Environ. Pollut. , vol.158 , Issue.7 , pp. 2335-2349
    • Kim, J.1    Van Der Bruggen, B.2
  • 8
    • 84959472243 scopus 로고    scopus 로고
    • Et al., Evaluation and removal of emerging nanoparticle contaminants in water treatment: A review
    • Z. Ma et al., Evaluation and removal of emerging nanoparticle contaminants in water treatment: a review Desalin. Water Treat. 2016 57 24 11221 11232
    • (2016) Desalin. Water Treat. , vol.57 , Issue.24 , pp. 11221-11232
    • Ma, Z.1
  • 9
    • 33947177512 scopus 로고    scopus 로고
    • Arsenic removal from water/wastewater using adsorbents - A critical review
    • D. Mohan C. U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents-A critical review J. Hazard. Mater. 2007 142 1-2 1 53
    • (2007) J. Hazard. Mater. , vol.142 , Issue.12 , pp. 1-53
    • Mohan, D.1    Pittman, C.U.2
  • 10
    • 70350620147 scopus 로고    scopus 로고
    • Et al., Application of carbon nanotube technology for removal of contaminants in drinking water: A review
    • V. K. K. Upadhyayula et al., Application of carbon nanotube technology for removal of contaminants in drinking water: A review Sci. Total Environ. 2009 408 1 1 13
    • (2009) Sci. Total Environ. , vol.408 , Issue.1 , pp. 1-13
    • Upadhyayula, V.K.K.1
  • 11
    • 0037054416 scopus 로고    scopus 로고
    • Distillation vs. Membrane filtration: Overview of process evolutions in seawater desalination
    • B. Van der Bruggen C. Vandecasteele Distillation vs. membrane filtration: overview of process evolutions in seawater desalination Desalination 2002 143 3 207 218
    • (2002) Desalination , vol.143 , Issue.3 , pp. 207-218
    • Van Der Bruggen, B.1    Vandecasteele, C.2
  • 12
    • 84877882999 scopus 로고    scopus 로고
    • Et al., Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials
    • S. Wang et al., Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials Chem. Eng. J. 2013 226 336 347
    • (2013) Chem. Eng. J. , vol.226 , pp. 336-347
    • Wang, S.1
  • 13
    • 84875332754 scopus 로고    scopus 로고
    • Et al., Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse
    • X. Qu et al., Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse Acc. Chem. Res. 2013 46 3 834 843
    • (2013) Acc. Chem. Res. , vol.46 , Issue.3 , pp. 834-843
    • Qu, X.1
  • 14
    • 84891672065 scopus 로고    scopus 로고
    • Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates
    • M. A. Lazar S. Varghese S. S. Nair Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates Catalysts 2012 2 4 572 601
    • (2012) Catalysts , vol.2 , Issue.4 , pp. 572-601
    • Lazar, M.A.1    Varghese, S.2    Nair, S.S.3
  • 15
    • 84897676924 scopus 로고    scopus 로고
    • Reviewing the occurrence data used in the revised Arsenic Rule
    • K. Alfredo C. Seidel J. A. Roberson Reviewing the occurrence data used in the revised Arsenic Rule J.-Am. Water Works Assoc. 2014 106 3 67 68
    • (2014) J. - Am. Water Works Assoc. , vol.106 , Issue.3 , pp. 67-68
    • Alfredo, K.1    Seidel, C.2    Roberson, J.A.3
  • 16
    • 84875701358 scopus 로고    scopus 로고
    • Using community economics to compare arsenic compliance and noncompliance
    • E. McGavisk J. A. Roberson C. Seidel Using community economics to compare arsenic compliance and noncompliance J.-Am. Water Works Assoc. 2013 105 3 47 48
    • (2013) J. - Am. Water Works Assoc. , vol.105 , Issue.3 , pp. 47-48
    • McGavisk, E.1    Roberson, J.A.2    Seidel, C.3
  • 17
    • 0037119149 scopus 로고    scopus 로고
    • Et al., Arsenic calamity in the Indian subcontinent - What lessons have been learned?
    • D. Chakraborti et al., Arsenic calamity in the Indian subcontinent-What lessons have been learned? Talanta 2002 58 1 3 22
    • (2002) Talanta , vol.58 , Issue.1 , pp. 3-22
    • Chakraborti, D.1
  • 18
    • 0037224599 scopus 로고    scopus 로고
    • Et al., Polymer supported inorganic nanoparticles: Characterization and environmental applications
    • L. Cumbal et al., Polymer supported inorganic nanoparticles: characterization and environmental applications React. Funct. Polym. 2003 54 1-3 167 180
    • (2003) React. Funct. Polym. , vol.54 , Issue.13 , pp. 167-180
    • Cumbal, L.1
  • 19
    • 24644447347 scopus 로고    scopus 로고
    • Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect
    • L. Cumbal A. K. Sengupta Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect Environ. Sci. Technol. 2005 39 17 6508 6515
    • (2005) Environ. Sci. Technol. , vol.39 , Issue.17 , pp. 6508-6515
    • Cumbal, L.1    Sengupta, A.K.2
  • 20
    • 77956425518 scopus 로고    scopus 로고
    • Et al., the effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons
    • A. M. Cooper et al., The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons J. Hazard. Mater. 2010 183 1-3 381 388
    • (2010) J. Hazard. Mater. , vol.183 , Issue.13 , pp. 381-388
    • Cooper, A.M.1
  • 21
    • 33845998206 scopus 로고    scopus 로고
    • Et al., A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water
    • P. Sylvester et al., A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water Environ. Eng. Sci. 2007 24 1 104 112
    • (2007) Environ. Eng. Sci. , vol.24 , Issue.1 , pp. 104-112
    • Sylvester, P.1
  • 22
    • 84937144286 scopus 로고    scopus 로고
    • Environmental applications of graphene-based nanomaterials
    • F. Perreault A. F. de Faria M. Elimelech Environmental applications of graphene-based nanomaterials Chem. Soc. Rev. 2015 44 16 5861 5896
    • (2015) Chem. Soc. Rev. , vol.44 , Issue.16 , pp. 5861-5896
    • Perreault, F.1    De Faria, A.F.2    Elimelech, M.3
  • 23
    • 84894700402 scopus 로고    scopus 로고
    • Et al., Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes
    • M. S. Rahaman et al., Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes J. Mater. Chem. B 2014 2 12 1724 1732
    • (2014) J. Mater. Chem. B , vol.2 , Issue.12 , pp. 1724-1732
    • Rahaman, M.S.1
  • 24
    • 84904700508 scopus 로고    scopus 로고
    • Et al., in situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation
    • M. Ben-Sasson et al., In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation Water Res. 2014 62 260 270
    • (2014) Water Res. , vol.62 , pp. 260-270
    • Ben-Sasson, M.1
  • 25
    • 80054922135 scopus 로고    scopus 로고
    • Et al., Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles
    • J. D. Schiffman et al., Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles Langmuir 2011 27 21 13159 13164
    • (2011) Langmuir , vol.27 , Issue.21 , pp. 13159-13164
    • Schiffman, J.D.1
  • 26
    • 80054879443 scopus 로고    scopus 로고
    • Et al., Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials
    • M. S. Mauter et al., Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials ACS Appl. Mater. Interfaces 2011 3 8 2861 2868
    • (2011) ACS Appl. Mater. Interfaces , vol.3 , Issue.8 , pp. 2861-2868
    • Mauter, M.S.1
  • 27
    • 84963894131 scopus 로고    scopus 로고
    • Et al., Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide
    • L. M. Gilbertson et al., Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide Environ. Sci. Technol. 2016 50 7 3975 3984
    • (2016) Environ. Sci. Technol. , vol.50 , Issue.7 , pp. 3975-3984
    • Gilbertson, L.M.1
  • 29
    • 84873524003 scopus 로고    scopus 로고
    • Et al., In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst
    • C. A. Chiu et al., In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst Water Res. 2013 47 4 1596 1603
    • (2013) Water Res. , vol.47 , Issue.4 , pp. 1596-1603
    • Chiu, C.A.1
  • 30
    • 84958546615 scopus 로고    scopus 로고
    • Et al., the role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity
    • A. W. Lounsbury et al., The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity J. Hazard. Mater. 2016 310 117 124
    • (2016) J. Hazard. Mater. , vol.310 , pp. 117-124
    • Lounsbury, A.W.1
  • 31
    • 33846465382 scopus 로고    scopus 로고
    • Et al., the application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review
    • C. McCullagh et al., The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review Res. Chem. Intermed. 2007 33 3-5 359 375
    • (2007) Res. Chem. Intermed. , vol.33 , Issue.35 , pp. 359-375
    • McCullagh, C.1
  • 32
    • 84872734692 scopus 로고    scopus 로고
    • Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine
    • T. Yang K. Doudrick P. Westerhoff Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine Water Res. 2013 47 3 1299 1307
    • (2013) Water Res. , vol.47 , Issue.3 , pp. 1299-1307
    • Yang, T.1    Doudrick, K.2    Westerhoff, P.3
  • 33
    • 84874367261 scopus 로고    scopus 로고
    • Et al., Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity
    • K. Doudrick et al., Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity Appl. Catal., B 2013 136 40 47
    • (2013) Appl. Catal., B , vol.136 , pp. 40-47
    • Doudrick, K.1
  • 34
    • 84873326420 scopus 로고    scopus 로고
    • Et al., Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size
    • L. A. Pretzer H. J. Song Y.-L. Fang et al., Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size J. Catal. 2013 298 206 217
    • (2013) J. Catal. , vol.298 , pp. 206-217
    • Pretzer, L.A.1    Song, H.J.2    Fang, Y.-L.3
  • 35
    • 84890248851 scopus 로고    scopus 로고
    • Et al., Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction
    • H. F. Qian et al., Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction Nanoscale 2014 6 1 358 364
    • (2014) Nanoscale , vol.6 , Issue.1 , pp. 358-364
    • Qian, H.F.1
  • 36
    • 84873326420 scopus 로고    scopus 로고
    • Et al., Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size
    • L. A. Pretzer et al., Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size J. Catal. 2013 298 206 217
    • (2013) J. Catal. , vol.298 , pp. 206-217
    • Pretzer, L.A.1
  • 37
    • 66149107474 scopus 로고    scopus 로고
    • Et al., Cleaner water using bimetallic nanoparticle catalysts
    • M. S. Wong et al., Cleaner water using bimetallic nanoparticle catalysts J. Chem. Technol. Biotechnol. 2009 84 2 158 166
    • (2009) J. Chem. Technol. Biotechnol. , vol.84 , Issue.2 , pp. 158-166
    • Wong, M.S.1
  • 38
    • 84937892135 scopus 로고    scopus 로고
    • Et al., Hexavalent chromium removal using metal oxide photocatalysts
    • Q. Cheng et al., Hexavalent chromium removal using metal oxide photocatalysts Appl. Catal., B 2015 176 740 748
    • (2015) Appl. Catal., B , vol.176 , pp. 740-748
    • Cheng, Q.1
  • 39
    • 41949096645 scopus 로고    scopus 로고
    • MTBE adsorption on alternative adsorbents and packed bed adsorber performance
    • A. Rossner D. R. U. Knappe MTBE adsorption on alternative adsorbents and packed bed adsorber performance Water Res. 2008 42 8-9 2287 2299
    • (2008) Water Res. , vol.42 , Issue.89 , pp. 2287-2299
    • Rossner, A.1    Knappe, D.R.U.2
  • 40
    • 67651091719 scopus 로고    scopus 로고
    • Removal of emerging contaminants of concern by alternative adsorbents
    • A. Rossner S. A. Snyder D. R. U. Knappe Removal of emerging contaminants of concern by alternative adsorbents Water Res. 2009 43 15 3787 3796
    • (2009) Water Res. , vol.43 , Issue.15 , pp. 3787-3796
    • Rossner, A.1    Snyder, S.A.2    Knappe, D.R.U.3
  • 41
    • 84939501836 scopus 로고    scopus 로고
    • Hexavalent Chromium Removal Using UV-TiO2/Ceramic Membrane Reactor
    • H. O. N. Stancl K. Hristovski P. Westerhoff Hexavalent Chromium Removal Using UV-TiO2/Ceramic Membrane Reactor Environ. Eng. Sci. 2015 32 8 676 683
    • (2015) Environ. Eng. Sci. , vol.32 , Issue.8 , pp. 676-683
    • Stancl, H.O.N.1    Hristovski, K.2    Westerhoff, P.3
  • 42
    • 62649174629 scopus 로고    scopus 로고
    • Et al., A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation
    • D. Gerrity et al., A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation Water Res. 2009 43 6 1597 1610
    • (2009) Water Res. , vol.43 , Issue.6 , pp. 1597-1610
    • Gerrity, D.1
  • 43
    • 47749096386 scopus 로고    scopus 로고
    • Et al., Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light
    • D. Gerrity et al., Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2008 43 11 1261 1270
    • (2008) J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. , vol.43 , Issue.11 , pp. 1261-1270
    • Gerrity, D.1
  • 44
    • 40749126814 scopus 로고    scopus 로고
    • Et al., Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation
    • H. Ryu et al., Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation Water Res. 2008 42 6-7 1523 1530
    • (2008) Water Res. , vol.42 , Issue.67 , pp. 1523-1530
    • Ryu, H.1
  • 45
    • 0037446721 scopus 로고    scopus 로고
    • Et al., Fouling and natural organic matter removal in adsorben/membrane systems for drinking water treatment
    • M. M. Zhang et al., Fouling and natural organic matter removal in adsorben/membrane systems for drinking water treatment Environ. Sci. Technol. 2003 37 8 1663 1669
    • (2003) Environ. Sci. Technol. , vol.37 , Issue.8 , pp. 1663-1669
    • Zhang, M.M.1
  • 46
    • 64049108086 scopus 로고    scopus 로고
    • Et al., Magnetic separations: From steel plants to biotechnology
    • C. T. Yavuz et al., Magnetic separations: From steel plants to biotechnology Chem. Eng. Sci. 2009 64 10 2510 2521
    • (2009) Chem. Eng. Sci. , vol.64 , Issue.10 , pp. 2510-2521
    • Yavuz, C.T.1
  • 47
    • 33847253412 scopus 로고    scopus 로고
    • Et al., the effect of nanocrystalline magnetite size on arsenic removal
    • J. T. Mayo et al., The effect of nanocrystalline magnetite size on arsenic removal Sci. Technol. Adv. Mater. 2007 8 1-2 71 75
    • (2007) Sci. Technol. Adv. Mater. , vol.8 , Issue.12 , pp. 71-75
    • Mayo, J.T.1
  • 48
    • 33750982392 scopus 로고    scopus 로고
    • Et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals
    • C. T. Yavuz et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals Science 2006 314 5801 964 967
    • (2006) Science , vol.314 , Issue.5801 , pp. 964-967
    • Yavuz, C.T.1
  • 49
    • 84867235180 scopus 로고    scopus 로고
    • Removal of arsenic contaminants with magnetic gamma-Fe2O3 nanoparticles
    • S. Lin D. Lu Z. Liu Removal of arsenic contaminants with magnetic gamma-Fe2O3 nanoparticles Chem. Eng. J. 2012 211 46 52
    • (2012) Chem. Eng. J. , vol.211 , pp. 46-52
    • Lin, S.1    Lu, D.2    Liu, Z.3
  • 50
    • 84978174570 scopus 로고    scopus 로고
    • Et al., Arsenic Removal by Nanoscale Magnetite in Guanajuato, Mexico
    • J. W. Farrell et al., Arsenic Removal by Nanoscale Magnetite in Guanajuato, Mexico Environ. Eng. Sci. 2014 31 7 393 402
    • (2014) Environ. Eng. Sci. , vol.31 , Issue.7 , pp. 393-402
    • Farrell, J.W.1
  • 51
    • 84871914744 scopus 로고    scopus 로고
    • Et al., Template-Assisted Crystallization of Sulfates onto Calcite: Implications for the Prevention of Salt Damage
    • E. Ruiz-Agudo et al., Template-Assisted Crystallization of Sulfates onto Calcite: Implications for the Prevention of Salt Damage Cryst. Growth Des. 2013 13 1 40 51
    • (2013) Cryst. Growth Des. , vol.13 , Issue.1 , pp. 40-51
    • Ruiz-Agudo, E.1
  • 52
    • 78650290318 scopus 로고    scopus 로고
    • Et al., C-60 Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst
    • J. Lee et al., C-60 Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst Environ. Sci. Technol. 2010 44 24 9488 9495
    • (2010) Environ. Sci. Technol. , vol.44 , Issue.24 , pp. 9488-9495
    • Lee, J.1
  • 53
    • 4544343747 scopus 로고    scopus 로고
    • Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH)
    • M. Badruzzaman P. Westerhoff D. R. U. Knappe Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH) Water Res. 2004 38 18 4002 4012
    • (2004) Water Res. , vol.38 , Issue.18 , pp. 4002-4012
    • Badruzzaman, M.1    Westerhoff, P.2    Knappe, D.R.U.3
  • 55
    • 39749152857 scopus 로고    scopus 로고
    • Et al., Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide
    • K. Hristovski et al., Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide J. Hazard. Mater. 2008 152 1 397 406
    • (2008) J. Hazard. Mater. , vol.152 , Issue.1 , pp. 397-406
    • Hristovski, K.1
  • 56
    • 44749092592 scopus 로고    scopus 로고
    • An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers
    • K. Hristovski P. Westerhoff J. Crittenden An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers J. Hazard. Mater. 2008 156 1-3 604 611
    • (2008) J. Hazard. Mater. , vol.156 , Issue.13 , pp. 604-611
    • Hristovski, K.1    Westerhoff, P.2    Crittenden, J.3
  • 57
    • 34447644388 scopus 로고    scopus 로고
    • Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media
    • K. Hristovski A. Baumgardner P. Westerhoff Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media J. Hazard. Mater. 2007 147 1-2 265 274
    • (2007) J. Hazard. Mater. , vol.147 , Issue.12 , pp. 265-274
    • Hristovski, K.1    Baumgardner, A.2    Westerhoff, P.3
  • 58
    • 30444447479 scopus 로고    scopus 로고
    • Et al., Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate
    • S. Yean et al., Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate J. Mater. Res. 2005 20 12 3255 3264
    • (2005) J. Mater. Res. , vol.20 , Issue.12 , pp. 3255-3264
    • Yean, S.1
  • 59
    • 69949183566 scopus 로고    scopus 로고
    • Et al., Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes
    • M. L. Lind et al., Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes Langmuir 2009 25 17 10139 10145
    • (2009) Langmuir , vol.25 , Issue.17 , pp. 10139-10145
    • Lind, M.L.1
  • 60
    • 61549108001 scopus 로고    scopus 로고
    • Et al., Silver nanoparticle-decorated porous ceramic composite for water treatment
    • Y. H. Lv et al., Silver nanoparticle-decorated porous ceramic composite for water treatment J. Membr. Sci. 2009 331 1-2 50 56
    • (2009) J. Membr. Sci. , vol.331 , Issue.12 , pp. 50-56
    • Lv, Y.H.1
  • 61
    • 84971011019 scopus 로고    scopus 로고
    • Et al., Morphology, Structure, and Properties of Metal Oxide/Polymer Nanocomposite Electrospun Mats
    • N. H. von Reitzenstein X. Bi Y. Yang et al., Morphology, Structure, and Properties of Metal Oxide/Polymer Nanocomposite Electrospun Mats J. Appl. Polym. Sci. 2016 133 33 43811
    • (2016) J. Appl. Polym. Sci. , vol.133 , Issue.33 , pp. 43811
    • Von Reitzenstein, N.H.1    Bi, X.2    Yang, Y.3
  • 62
    • 84886942614 scopus 로고    scopus 로고
    • Et al., Photocatalytic Process of Simultaneous Desulfurization and Denitrification of Flue Gas by TiO2-Polyacrylonitrile Nanofibers
    • C. Y. Su et al., Photocatalytic Process of Simultaneous Desulfurization and Denitrification of Flue Gas by TiO2-Polyacrylonitrile Nanofibers Environ. Sci. Technol. 2013 47 20 11562 11568
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.20 , pp. 11562-11568
    • Su, C.Y.1
  • 63
    • 0029177018 scopus 로고
    • Et al., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification
    • A. Fernandez et al., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification Appl. Catal., B 1995 7 1-2 49 63
    • (1995) Appl. Catal., B , vol.7 , Issue.12 , pp. 49-63
    • Fernandez, A.1
  • 64
    • 9244249205 scopus 로고    scopus 로고
    • Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review
    • K. Kabra R. Chaudhary R. L. Sawhney Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review Ind. Eng. Chem. Res. 2004 43 24 7683 7696
    • (2004) Ind. Eng. Chem. Res. , vol.43 , Issue.24 , pp. 7683-7696
    • Kabra, K.1    Chaudhary, R.2    Sawhney, R.L.3
  • 65
    • 0032005205 scopus 로고    scopus 로고
    • Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis
    • N. J. Peill M. R. Hoffmann Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis Environ. Sci. Technol. 1998 32 3 398 404
    • (1998) Environ. Sci. Technol. , vol.32 , Issue.3 , pp. 398-404
    • Peill, N.J.1    Hoffmann, M.R.2
  • 66
    • 0029411974 scopus 로고
    • DEVELOPMENT and OPTIMIZATION of A TIO2 COATED FIBEROPTIC CABLE REACTOR - PHOTOCATALYTIC DEGRADATION of 4-CHLOROPHENOL
    • N. J. Peill M. R. Hoffmann DEVELOPMENT AND OPTIMIZATION OF A TIO2 COATED FIBEROPTIC CABLE REACTOR-PHOTOCATALYTIC DEGRADATION OF 4-CHLOROPHENOL Environ. Sci. Technol. 1995 29 12 2974 2981
    • (1995) Environ. Sci. Technol. , vol.29 , Issue.12 , pp. 2974-2981
    • Peill, N.J.1    Hoffmann, M.R.2
  • 67
    • 0039129509 scopus 로고
    • Et al., Environmental Applications of Semiconductor Photocatalysis
    • M. R. Hoffmann et al., Environmental Applications of Semiconductor Photocatalysis Chem. Rev. 1995 95 1 69 96
    • (1995) Chem. Rev. , vol.95 , Issue.1 , pp. 69-96
    • Hoffmann, M.R.1
  • 68
    • 32644479387 scopus 로고    scopus 로고
    • Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications
    • H. Choi E. Stathatos D. D. Dionysiou Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications Appl. Catal., B 2006 63 1-2 60 67
    • (2006) Appl. Catal., B , vol.63 , Issue.12 , pp. 60-67
    • Choi, H.1    Stathatos, E.2    Dionysiou, D.D.3
  • 69
    • 84922157603 scopus 로고    scopus 로고
    • Et al., Tailored Synthesis of Photoactive TiO2 Nanofibers and Au/TiO2 Nanofiber Composites: Structure and Reactivity Optimization for Water Treatment Applications
    • M. J. Nalbandian et al., Tailored Synthesis of Photoactive TiO2 Nanofibers and Au/TiO2 Nanofiber Composites: Structure and Reactivity Optimization for Water Treatment Applications Environ. Sci. Technol. 2015 49 3 1654 1663
    • (2015) Environ. Sci. Technol. , vol.49 , Issue.3 , pp. 1654-1663
    • Nalbandian, M.J.1
  • 70
    • 84877581721 scopus 로고    scopus 로고
    • Functional materials by electrospinning of polymers
    • S. Agarwal A. Greiner J. H. Wendorff Functional materials by electrospinning of polymers Prog. Polym. Sci. 2013 38 6 963 991
    • (2013) Prog. Polym. Sci. , vol.38 , Issue.6 , pp. 963-991
    • Agarwal, S.1    Greiner, A.2    Wendorff, J.H.3
  • 71
    • 84859316017 scopus 로고    scopus 로고
    • Et al., Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water
    • B. P. Chaplin et al., Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water Environ. Sci. Technol. 2012 46 7 3655 3670
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.7 , pp. 3655-3670
    • Chaplin, B.P.1
  • 72
    • 0035839710 scopus 로고    scopus 로고
    • Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium
    • R. Dittmeyer V. Hollein K. Daub Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium J. Mol. Catal. A: Chem. 2001 173 1-2 135 184
    • (2001) J. Mol. Catal. A: Chem. , vol.173 , Issue.12 , pp. 135-184
    • Dittmeyer, R.1    Hollein, V.2    Daub, K.3
  • 73
    • 0033830111 scopus 로고    scopus 로고
    • The chemical reduction of nitrate in aqueous solution
    • J. C. Fanning The chemical reduction of nitrate in aqueous solution Coord. Chem. Rev. 2000 199 159 179
    • (2000) Coord. Chem. Rev. , vol.199 , pp. 159-179
    • Fanning, J.C.1
  • 74
    • 84856575421 scopus 로고    scopus 로고
    • Membrane distillation: A comprehensive review
    • A. Alkhudhiri N. Darwish N. Hilal Membrane distillation: A comprehensive review Desalination 2012 287 2 18
    • (2012) Desalination , vol.287 , pp. 2-18
    • Alkhudhiri, A.1    Darwish, N.2    Hilal, N.3
  • 75
    • 84879248556 scopus 로고    scopus 로고
    • Et al., Advances in Membrane Distillation for Water Desalination and Purification Applications
    • L. M. Camacho et al., Advances in Membrane Distillation for Water Desalination and Purification Applications Water 2013 5 1 94 196
    • (2013) Water , vol.5 , Issue.1 , pp. 94-196
    • Camacho, L.M.1
  • 76
    • 84880344134 scopus 로고    scopus 로고
    • Et al., Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
    • O. Neumann et al., Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles Proc. Natl. Acad. Sci. U. S. A. 2013 110 29 11677 11681
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.29 , pp. 11677-11681
    • Neumann, O.1
  • 77
    • 84872876041 scopus 로고    scopus 로고
    • Et al., Solar Vapor Generation Enabled by Nanoparticles
    • O. Neumann et al., Solar Vapor Generation Enabled by Nanoparticles ACS Nano 2013 7 1 42 49
    • (2013) ACS Nano , vol.7 , Issue.1 , pp. 42-49
    • Neumann, O.1
  • 78
    • 84906087297 scopus 로고    scopus 로고
    • Et al., Nanoparticles Heat through Light Localization
    • N. J. Hogan et al., Nanoparticles Heat through Light Localization Nano Lett. 2014 14 8 4640 4645
    • (2014) Nano Lett. , vol.14 , Issue.8 , pp. 4640-4645
    • Hogan, N.J.1
  • 79
    • 0035854541 scopus 로고    scopus 로고
    • Et al., Visible-light photocatalysis in nitrogen-doped titanium oxides
    • R. Asahi et al., Visible-light photocatalysis in nitrogen-doped titanium oxides Science 2001 293 5528 269 271
    • (2001) Science , vol.293 , Issue.5528 , pp. 269-271
    • Asahi, R.1
  • 80
    • 84928720193 scopus 로고    scopus 로고
    • Et al., A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection
    • J. A. Byrne et al., A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection Molecules 2015 20 4 5574 5615
    • (2015) Molecules , vol.20 , Issue.4 , pp. 5574-5615
    • Byrne, J.A.1
  • 81
    • 84869407347 scopus 로고    scopus 로고
    • Et al., Engineering Light: Advances in Wavelength Conversion Materials for Energy and Environmental Technologies
    • E. L. Cates et al., Engineering Light: Advances in Wavelength Conversion Materials for Energy and Environmental Technologies Environ. Sci. Technol. 2012 46 22 12316 12328
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.22 , pp. 12316-12328
    • Cates, E.L.1
  • 82
    • 84960877097 scopus 로고    scopus 로고
    • Et al., Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts
    • H.-I. Kim et al., Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts Energy Environ. Sci. 2016 9 3 1063 1073
    • (2016) Energy Environ. Sci. , vol.9 , Issue.3 , pp. 1063-1073
    • Kim, H.-I.1
  • 83
    • 84867761091 scopus 로고    scopus 로고
    • Encapsulated Triplet-Triplet Annihilation-Based Upconversion in the Aqueous Phase for Sub-Band-Gap Semiconductor Photocatalysis
    • J.-H. Kim J.-H. Kim Encapsulated Triplet-Triplet Annihilation-Based Upconversion in the Aqueous Phase for Sub-Band-Gap Semiconductor Photocatalysis J. Am. Chem. Soc. 2012 134 42 17478 17481
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.42 , pp. 17478-17481
    • Kim, J.-H.1    Kim, J.-H.2
  • 84
    • 14644415981 scopus 로고    scopus 로고
    • Et al., Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water
    • J. Lonnen et al., Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water Water Res. 2005 39 5 877 883
    • (2005) Water Res. , vol.39 , Issue.5 , pp. 877-883
    • Lonnen, J.1
  • 85
    • 84902436667 scopus 로고    scopus 로고
    • Et al., Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters
    • G. Y. Lui et al., Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters Sci. Total Environ. 2014 493 185 196
    • (2014) Sci. Total Environ. , vol.493 , pp. 185-196
    • Lui, G.Y.1
  • 86
    • 34047228059 scopus 로고    scopus 로고
    • Et al., Photocatalytic decontamination and disinfection of water with solar collectors
    • S. Malato et al., Photocatalytic decontamination and disinfection of water with solar collectors Catal. Today 2007 122 1-2 137 149
    • (2007) Catal. Today , vol.122 , Issue.12 , pp. 137-149
    • Malato, S.1
  • 87
    • 84929208169 scopus 로고    scopus 로고
    • Et al., Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: A review
    • W. Zhang B. Jia Q. Wang et al., Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review J. Nanopart. Res. 2015 17 5 221
    • (2015) J. Nanopart. Res. , vol.17 , Issue.5 , pp. 221
    • Zhang, W.1    Jia, B.2    Wang, Q.3
  • 88
    • 84958905561 scopus 로고    scopus 로고
    • Et al., A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern
    • R. Fagan et al., A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern Mater. Sci. Semicond. Process. 2016 42 2 14
    • (2016) Mater. Sci. Semicond. Process. , vol.42 , pp. 2-14
    • Fagan, R.1
  • 89
    • 84863493867 scopus 로고    scopus 로고
    • Et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications
    • M. Pelaez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications Appl. Catal., B 2012 125 331 349
    • (2012) Appl. Catal., B , vol.125 , pp. 331-349
    • Pelaez, M.1
  • 90
    • 64249150670 scopus 로고    scopus 로고
    • Et al., Review of feasible solar energy applications to water processes
    • J. Blanco et al., Review of feasible solar energy applications to water processes Renewable Sustainable Energy Rev. 2009 13 6-7 1437 1445
    • (2009) Renewable Sustainable Energy Rev. , vol.13 , Issue.67 , pp. 1437-1445
    • Blanco, J.1
  • 91
    • 84946542847 scopus 로고    scopus 로고
    • Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation
    • E. L. Cates J.-H. Kim Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation J. Photochem. Photobiol., B 2015 153 405 411
    • (2015) J. Photochem. Photobiol., B , vol.153 , pp. 405-411
    • Cates, E.L.1    Kim, J.-H.2
  • 92
    • 84897991884 scopus 로고    scopus 로고
    • Et al., Solar photocatalysis for water disinfection: Materials and reactor design
    • D. A. Keane et al., Solar photocatalysis for water disinfection: materials and reactor design Catal. Sci. Technol. 2014 4 5 1211 1226
    • (2014) Catal. Sci. Technol. , vol.4 , Issue.5 , pp. 1211-1226
    • Keane, D.A.1
  • 93
    • 84865711324 scopus 로고    scopus 로고
    • Et al., Solar water disinfection (SODIS): A review from bench-top to roof-top
    • K. G. McGuigan et al., Solar water disinfection (SODIS): A review from bench-top to roof-top J. Hazard. Mater. 2012 235 29 46
    • (2012) J. Hazard. Mater. , vol.235 , pp. 29-46
    • McGuigan, K.G.1
  • 94
    • 0031152614 scopus 로고    scopus 로고
    • Et al., SODIS - An emerging water treatment process
    • B. Sommer et al., SODIS-An emerging water treatment process J. Water Supply: Res. Technol. - AQUA 1997 46 3 127 137
    • (1997) J. Water Supply: Res. Technol. - AQUA , vol.46 , Issue.3 , pp. 127-137
    • Sommer, B.1
  • 95
    • 84922349899 scopus 로고    scopus 로고
    • Et al., Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach
    • D. Spasiano et al., Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach Appl. Catal., B 2015 170 90 123
    • (2015) Appl. Catal., B , vol.170 , pp. 90-123
    • Spasiano, D.1
  • 96
    • 84959369482 scopus 로고    scopus 로고
    • Et al., How important is drinking water exposure for the risks of engineered nanoparticles to consumers?
    • K. Tiede et al., How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 2016 10 1 102 110
    • (2016) Nanotoxicology , vol.10 , Issue.1 , pp. 102-110
    • Tiede, K.1
  • 97
    • 84955136025 scopus 로고    scopus 로고
    • Et al., Implications of Engineered Nanomaterials in Drinking Water Sources
    • K. D. Good et al., Implications of Engineered Nanomaterials in Drinking Water Sources J.-Am. Water Works Assoc. 2016 108 1 E1 E17
    • (2016) J. - Am. Water Works Assoc. , vol.108 , Issue.1 , pp. E1-E17
    • Good, K.D.1
  • 98
    • 84975731008 scopus 로고    scopus 로고
    • Water governance challenges presented by nanotechnologies: Tracking, identifying and quantifying nanomaterials (the ultimate disparate source) in our waterways
    • I. Lynch Water governance challenges presented by nanotechnologies: tracking, identifying and quantifying nanomaterials (the ultimate disparate source) in our waterways Hydrol. Res. 2016 47 3 552 568
    • (2016) Hydrol. Res. , vol.47 , Issue.3 , pp. 552-568
    • Lynch, I.1
  • 99
    • 84962468686 scopus 로고    scopus 로고
    • Vulnerability of drinking water supplies to engineered nanoparticles
    • M. Troester H. J. Brauch T. Hofmann Vulnerability of drinking water supplies to engineered nanoparticles Water Res. 2016 96 255 279
    • (2016) Water Res. , vol.96 , pp. 255-279
    • Troester, M.1    Brauch, H.J.2    Hofmann, T.3
  • 100
    • 84939599366 scopus 로고    scopus 로고
    • Et al., Comparing Public Perceptions of Alternative Water Sources for Potable Use: The Case of Rainwater, Stormwater, Desalinated Water, and Recycled Water
    • K. S. Fielding et al., Comparing Public Perceptions of Alternative Water Sources for Potable Use: The Case of Rainwater, Stormwater, Desalinated Water, and Recycled Water Water Resour. Manage. 2015 29 12 4501 4518
    • (2015) Water Resour. Manage. , vol.29 , Issue.12 , pp. 4501-4518
    • Fielding, K.S.1
  • 101
    • 84938359821 scopus 로고    scopus 로고
    • Et al., Comparative analysis of the labelling of nanotechnologies across four stakeholder groups
    • A. Capon et al., Comparative analysis of the labelling of nanotechnologies across four stakeholder groups J. Nanopart. Res. 2015 17 8 13
    • (2015) J. Nanopart. Res. , vol.17 , Issue.8 , pp. 13
    • Capon, A.1
  • 102
    • 84928802528 scopus 로고    scopus 로고
    • Et al., Perceptions of risk from nanotechnologies and trust in stakeholders: A cross sectional study of public, academic, government and business attitudes
    • A. Capon et al., Perceptions of risk from nanotechnologies and trust in stakeholders: a cross sectional study of public, academic, government and business attitudes BMC Public Health 2015 15
    • (2015) BMC Public Health , vol.15
    • Capon, A.1
  • 103
    • 84938703226 scopus 로고    scopus 로고
    • Et al., Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry
    • L. M. Gilbertson et al., Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry Chem. Soc. Rev. 2015 44 16 5758 5777
    • (2015) Chem. Soc. Rev. , vol.44 , Issue.16 , pp. 5758-5777
    • Gilbertson, L.M.1
  • 104
    • 79953065590 scopus 로고    scopus 로고
    • The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process
    • A. Bach R. Semiat The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process Desalination 2011 273 1 57 63
    • (2011) Desalination , vol.273 , Issue.1 , pp. 57-63
    • Bach, A.1    Semiat, R.2
  • 105
    • 84959498526 scopus 로고    scopus 로고
    • Et al., Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality
    • L. M. Gilbertson et al., Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality Nanotoxicology 2016 10 1 10 19
    • (2016) Nanotoxicology , vol.10 , Issue.1 , pp. 10-19
    • Gilbertson, L.M.1
  • 106
    • 85000969963 scopus 로고    scopus 로고
    • Et al., Reducing Environmental Impacts of Metal (Hydr)Oxide Nanoparticle Embedded Anion Exchange Resins Using Anticipatory Life Cycle Assessment
    • M. Gifford et al., Reducing Environmental Impacts of Metal (Hydr)Oxide Nanoparticle Embedded Anion Exchange Resins Using Anticipatory Life Cycle Assessment Environ. Sci.: Nano 2016 10.1039/C6EN00191B
    • (2016) Environ. Sci.: Nano
    • Gifford, M.1
  • 107
    • 84963690349 scopus 로고    scopus 로고
    • Et al., the applicability of chemical alternatives assessment for engineered nanomaterials
    • R. Hjorth et al., The applicability of chemical alternatives assessment for engineered nanomaterials Integr. Environ. Assess. Manage. 2016 10.1002/ieam.1762
    • (2016) Integr. Environ. Assess. Manage.
    • Hjorth, R.1
  • 108
    • 84906872175 scopus 로고    scopus 로고
    • Et al., Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements
    • S. Lee et al., Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements Environ. Sci. Technol. 2014 48 17 10291 10300
    • (2014) Environ. Sci. Technol. , vol.48 , Issue.17 , pp. 10291-10300
    • Lee, S.1
  • 109
    • 84870929450 scopus 로고    scopus 로고
    • Et al., beyond nC(60): Strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples
    • B. F. G. Pycke et al., Beyond nC(60): strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples Anal. Bioanal. Chem. 2012 404 9 2583 2595
    • (2012) Anal. Bioanal. Chem. , vol.404 , Issue.9 , pp. 2583-2595
    • Pycke, B.F.G.1
  • 110
    • 27444433231 scopus 로고    scopus 로고
    • Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review
    • M. D. Bezerra M. A. Z. Arruda S. L. C. Ferreira Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review Appl. Spectrosc. Rev. 2005 40 4 269 299
    • (2005) Appl. Spectrosc. Rev. , vol.40 , Issue.4 , pp. 269-299
    • Bezerra, M.D.1    Arruda, M.A.Z.2    Ferreira, S.L.C.3
  • 111
    • 84864615607 scopus 로고    scopus 로고
    • Chemometric Analytical Approach for the Cloud Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc Oxide Nanoparticles in Water Samples
    • S. M. Majedi H. K. Lee B. C. Kelly Chemometric Analytical Approach for the Cloud Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc Oxide Nanoparticles in Water Samples Anal. Chem. 2012 84 15 6546 6552
    • (2012) Anal. Chem. , vol.84 , Issue.15 , pp. 6546-6552
    • Majedi, S.M.1    Lee, H.K.2    Kelly, B.C.3
  • 112
    • 79451473490 scopus 로고    scopus 로고
    • Et al., Evaluation of extraction methods for quantification of aqueous fullerenes in urine
    • T. M. Benn et al., Evaluation of extraction methods for quantification of aqueous fullerenes in urine Anal. Bioanal. Chem. 2011 399 4 1631 1639
    • (2011) Anal. Bioanal. Chem. , vol.399 , Issue.4 , pp. 1631-1639
    • Benn, T.M.1
  • 113
    • 84940732048 scopus 로고    scopus 로고
    • Et al., Foresight Study on the Risk Governance of New Technologies: The Case of Nanotechnology
    • S. A. K. Read et al., Foresight Study on the Risk Governance of New Technologies: The Case of Nanotechnology Risk Anal. 2016 36 5 1006 1024
    • (2016) Risk Anal. , vol.36 , Issue.5 , pp. 1006-1024
    • Read, S.A.K.1
  • 114
    • 84940208749 scopus 로고    scopus 로고
    • Et al., Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: Reviewing progress to date
    • W. C. Walker C. J. Bosso M. Eckelman et al., Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date J. Nanopart. Res. 2015 17 8 344
    • (2015) J. Nanopart. Res. , vol.17 , Issue.8 , pp. 344
    • Walker, W.C.1    Bosso, C.J.2    Eckelman, M.3
  • 115
    • 84878649320 scopus 로고    scopus 로고
    • From Cradle-to-Grave at the Nanoscale: Gaps in US Regulatory Oversight along the Nanomaterial Life Cycle
    • C. E. H. Beaudrie M. Kandlikar T. Satterfield From Cradle-to-Grave at the Nanoscale: Gaps in US Regulatory Oversight along the Nanomaterial Life Cycle Environ. Sci. Technol. 2013 47 11 5524 5534
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.11 , pp. 5524-5534
    • Beaudrie, C.E.H.1    Kandlikar, M.2    Satterfield, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.