-
1
-
-
0025985176
-
Contributions to the mathematical theory of epidemics-I
-
[1] Kermack, W.O., McKendrick, A.G., Contributions to the mathematical theory of epidemics-I. Bull. Math. Biol. 53 (1991), 33–55.
-
(1991)
Bull. Math. Biol.
, vol.53
, pp. 33-55
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
2
-
-
85124060458
-
Modeling and Dynamics of Infectious Diseases
-
Higher Education Press
-
[2] Ma, Z., Zhou, Y., Wu, J., Modeling and Dynamics of Infectious Diseases. 2009, Higher Education Press.
-
(2009)
-
-
Ma, Z.1
Zhou, Y.2
Wu, J.3
-
3
-
-
84862833105
-
Analysis of rabies in China: transmission dynamics and control
-
[3] Zhang, J., Jin, Z., Sun, G.-Q., Zhou, T., Ruan, S., Analysis of rabies in China: transmission dynamics and control. PLoS One, 6, 2011, e20891.
-
(2011)
PLoS One
, vol.6
, pp. e20891
-
-
Zhang, J.1
Jin, Z.2
Sun, G.-Q.3
Zhou, T.4
Ruan, S.5
-
4
-
-
34249301320
-
Some properties of a simple stochastic epidemic model of SIR type
-
[4] Tuckwell, H.C., Williams, R.J., Some properties of a simple stochastic epidemic model of SIR type. Math. Biosci. 208 (2007), 76–97.
-
(2007)
Math. Biosci.
, vol.208
, pp. 76-97
-
-
Tuckwell, H.C.1
Williams, R.J.2
-
5
-
-
42249098829
-
An introduction to stochastic epidemic models
-
Springer
-
[5] Allen, L.J.S., An introduction to stochastic epidemic models. Mathematical Epidemiology, 2008, Springer, 81–130.
-
(2008)
Mathematical Epidemiology
, pp. 81-130
-
-
Allen, L.J.S.1
-
6
-
-
84928893084
-
Introduction to Stochastic Differential Equations
-
Dekker New York
-
[6] Thomas, C.G., Introduction to Stochastic Differential Equations. 1988, Dekker, New York.
-
(1988)
-
-
Thomas, C.G.1
-
7
-
-
0003722979
-
Stochastic Differential Equations: An Introduction with Applications
-
Springer
-
[7] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications. 2010, Springer.
-
(2010)
-
-
Øksendal, B.1
-
8
-
-
0003561266
-
Stochastic Differential Equations and their Applications
-
Horwood Chichester
-
[8] Mao, X., Stochastic Differential Equations and their Applications. 1997, Horwood, Chichester.
-
(1997)
-
-
Mao, X.1
-
9
-
-
0242563961
-
Environmental noise suppresses explosion in population dynamics
-
[9] Mao, X., Marion, G., Renshaw, E., Environmental noise suppresses explosion in population dynamics. Stochastic Process. Appl. 97 (2002), 95–110.
-
(2002)
Stochastic Process. Appl.
, vol.97
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
10
-
-
0033314540
-
Stochastic spatial models
-
[10] Durrett, R., Stochastic spatial models. SIAM Rev. 41 (1999), 677–718.
-
(1999)
SIAM Rev.
, vol.41
, pp. 677-718
-
-
Durrett, R.1
-
11
-
-
84455169402
-
The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence
-
[11] Yang, Q., Jiang, D., Shi, N., Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388 (2012), 248–271.
-
(2012)
J. Math. Anal. Appl.
, vol.388
, pp. 248-271
-
-
Yang, Q.1
Jiang, D.2
Shi, N.3
Ji, C.4
-
12
-
-
79960370338
-
A stochastic differential equation SIS epidemic model
-
[12] Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J., A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71 (2011), 876–902.
-
(2011)
SIAM J. Appl. Math.
, vol.71
, pp. 876-902
-
-
Gray, A.1
Greenhalgh, D.2
Hu, L.3
Mao, X.4
Pan, J.5
-
13
-
-
0035413567
-
Long term behavior of solutions of the Lotka–Volterra system under small random perturbations
-
[13] Khasminskii, R.Z., Klebaner, F.C., Long term behavior of solutions of the Lotka–Volterra system under small random perturbations. Ann. Appl. Probab. 11 (2001), 952–963.
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 952-963
-
-
Khasminskii, R.Z.1
Klebaner, F.C.2
-
14
-
-
84889259690
-
Parallel logic gates in synthetic gene networks induced by non-gaussian noise
-
[14] Xu, Y., Jin, X., Zhang, H., Parallel logic gates in synthetic gene networks induced by non-gaussian noise. Phys. Rev. E, 88, 2013, 052721.
-
(2013)
Phys. Rev. E
, vol.88
-
-
Xu, Y.1
Jin, X.2
Zhang, H.3
-
15
-
-
84947491559
-
The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate
-
[15] Li, D., Cui, J., Liu, M., Liu, S., The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate. Bull. Math. Biol. 77 (2015), 1705–1743.
-
(2015)
Bull. Math. Biol.
, vol.77
, pp. 1705-1743
-
-
Li, D.1
Cui, J.2
Liu, M.3
Liu, S.4
-
16
-
-
84873535867
-
Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence
-
[16] Lahrouz, A., Omari, L., Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence. Statist. Probab. Lett. 83 (2013), 960–968.
-
(2013)
Statist. Probab. Lett.
, vol.83
, pp. 960-968
-
-
Lahrouz, A.1
Omari, L.2
-
17
-
-
84872020070
-
Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations
-
[17] Yang, Q., Mao, X., Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. RWA 14 (2013), 1434–1456.
-
(2013)
Nonlinear Anal. RWA
, vol.14
, pp. 1434-1456
-
-
Yang, Q.1
Mao, X.2
-
18
-
-
84884672931
-
Dynamics of a two-prey one predator system in random environments
-
[18] Liu, M., Wang, K., Dynamics of a two-prey one predator system in random environments. J. Nonlinear Sci. 23 (2013), 751–775.
-
(2013)
J. Nonlinear Sci.
, vol.23
, pp. 751-775
-
-
Liu, M.1
Wang, K.2
-
19
-
-
70450222692
-
Epidemic modelling: Aspects where stochastic epidemic models: A survey
-
[19] Britton, T., Lindenstrand, D., Epidemic modelling: Aspects where stochastic epidemic models: A survey. Math. Biosci. 22 (2010), 109–116.
-
(2010)
Math. Biosci.
, vol.22
, pp. 109-116
-
-
Britton, T.1
Lindenstrand, D.2
-
20
-
-
0026360185
-
Reproduction numbers and thresholds in stochastic epidemic models I. homogeneous populations
-
[20] Jacquez, J.A., O'Neill, P., Reproduction numbers and thresholds in stochastic epidemic models I. homogeneous populations. Math. Biosci. 107 (1991), 161–186.
-
(1991)
Math. Biosci.
, vol.107
, pp. 161-186
-
-
Jacquez, J.A.1
O'Neill, P.2
-
21
-
-
0029175103
-
Stochastic epidemics: major outbreaks and the duration of the endemic period
-
[21] van Herwaarden, O.A., Grasman, J., Stochastic epidemics: major outbreaks and the duration of the endemic period. J. Math. Biol. 33 (1995), 581–601.
-
(1995)
J. Math. Biol.
, vol.33
, pp. 581-601
-
-
van Herwaarden, O.A.1
Grasman, J.2
-
22
-
-
0036293119
-
Stochastic models of some endemic infections
-
[22] Näsell, I., Stochastic models of some endemic infections. Math. Biosci. 179 (2002), 1–19.
-
(2002)
Math. Biosci.
, vol.179
, pp. 1-19
-
-
Näsell, I.1
-
23
-
-
19944381861
-
Stability of a stochastic SIR system
-
[23] Tornatore, E., Buccellato, S.M., Vetro, P., Stability of a stochastic SIR system. Physica A 354 (2005), 111–126.
-
(2005)
Physica A
, vol.354
, pp. 111-126
-
-
Tornatore, E.1
Buccellato, S.M.2
Vetro, P.3
-
24
-
-
33750368835
-
A stochastic model of AIDS and condom use
-
[24] Dalal, N., Greenhalgh, D., Mao, X., A stochastic model of AIDS and condom use. J. Math. Anal. Appl. 325 (2007), 36–53.
-
(2007)
J. Math. Anal. Appl.
, vol.325
, pp. 36-53
-
-
Dalal, N.1
Greenhalgh, D.2
Mao, X.3
-
25
-
-
38949193330
-
A stochastic model for internal HIV dynamics
-
[25] Dalal, N., Greenhalgh, D., Mao, X., A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341 (2008), 1084–1101.
-
(2008)
J. Math. Anal. Appl.
, vol.341
, pp. 1084-1101
-
-
Dalal, N.1
Greenhalgh, D.2
Mao, X.3
-
26
-
-
77955268021
-
The long time behavior of DI SIR epidemic model with stochastic perturbation
-
[26] Jiang, D., Ji, C., Shi, N., Yu, J., The long time behavior of DI SIR epidemic model with stochastic perturbation. J. Math. Anal. Appl. 372 (2010), 162–180.
-
(2010)
J. Math. Anal. Appl.
, vol.372
, pp. 162-180
-
-
Jiang, D.1
Ji, C.2
Shi, N.3
Yu, J.4
-
27
-
-
84872028049
-
Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates
-
[27] Liu, Z., Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal. RWA 14 (2013), 1286–1299.
-
(2013)
Nonlinear Anal. RWA
, vol.14
, pp. 1286-1299
-
-
Liu, Z.1
-
28
-
-
84916882895
-
Threshold behavior in a stochastic SIS epidemic model with standard incidence
-
[28] Lin, Y., Jiang, D., Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dynam. Differential Equations 26 (2014), 1079–1094.
-
(2014)
J. Dynam. Differential Equations
, vol.26
, pp. 1079-1094
-
-
Lin, Y.1
Jiang, D.2
-
29
-
-
84887260929
-
Stationary distribution of a stochastic SIS epidemic model with vaccination
-
[29] Lin, Y., Jiang, D., Wang, S., Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A 394 (2014), 187–197.
-
(2014)
Physica A
, vol.394
, pp. 187-197
-
-
Lin, Y.1
Jiang, D.2
Wang, S.3
-
30
-
-
24644508416
-
Exclusion and persistence in deterministic and stochastic chemostat models
-
[30] Imhof, L., Walcher, S., Exclusion and persistence in deterministic and stochastic chemostat models. J. Differential Equations 217 (2005), 26–53.
-
(2005)
J. Differential Equations
, vol.217
, pp. 26-53
-
-
Imhof, L.1
Walcher, S.2
-
31
-
-
0003649950
-
Stochastic Stability of Differential Equations
-
Sijthoff and Noordhoff Alphen aan den Rijn, The Netherlands
-
[31] Has'minskii, R.Z., Stochastic Stability of Differential Equations. 1980, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands.
-
(1980)
-
-
Has'minskii, R.Z.1
|