메뉴 건너뛰기




Volumn 3, Issue 2, 2013, Pages 101-115

Integrated Statistical and Rule-Mining Techniques for Dna Methylation and Gene Expression Data Analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84999373178     PISSN: None     EISSN: 24496499     Source Type: Journal    
DOI: 10.2478/jaiscr-2014-0008     Document Type: Article
Times cited : (17)

References (33)
  • 1
    • 84863281534 scopus 로고    scopus 로고
    • Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma
    • A. Navarro, P. Yin, D. Monsivais, S. M. Lin, P. Du, J. J. Wei, S. E. Bulun, Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma, PLoS One, vol. 7, no. 3, pp. e33284, 2012.
    • (2012) PLoS One , vol.7 , Issue.3
    • Navarro, A.1    Yin, P.2    Monsivais, D.3    Lin, S.M.4    Du, P.5    Wei, J.J.6    Bulun, S.E.7
  • 2
    • 65249115735 scopus 로고    scopus 로고
    • RankAggreg, an R Package for Weighted Rank Aggregation
    • V. Pihur, S. Datta and S. Datta, RankAggreg, an R Package for Weighted Rank Aggregation, BMC Bioinformatics, vol. 10, pp. 62-72, 2009.
    • (2009) BMC Bioinformatics , vol.10 , pp. 62-72
    • Pihur, V.1    Datta, S.2    Datta, S.3
  • 7
    • 33645643565 scopus 로고    scopus 로고
    • A Two-Sample Bayesian t-test for Microarray Data
    • R. J. Fox, M.W. Dimmic, A Two-Sample Bayesian t-test for Microarray Data, BMC Bioinformatics, vol. 7, no. 126, pp. 1-11, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.126 , pp. 1-11
    • Fox, R.J.1    Dimmic, M.W.2
  • 8
    • 28844453286 scopus 로고    scopus 로고
    • Parametric Versus Non-Parametric Statistics in the Analysis of Randomized Trials with Non-Normally Distributed Data
    • A. Vickers, Parametric Versus Non-Parametric Statistics in the Analysis of Randomized Trials with Non-Normally Distributed Data, BMC Medical Research Methodology, vol. 5, no. 35, 2005.
    • (2005) BMC Medical Research Methodology , vol.5 , Issue.35
    • Vickers, A.1
  • 10
    • 84859945790 scopus 로고    scopus 로고
    • A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1-Human Protein Interactions
    • A. Mukhopadhyay, U. Maulik, and S. Bandyopdhyay, A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1-Human Protein Interactions, PLoS One, vol. 7, no. 4, pp. e32289, 2012.
    • (2012) PLoS One , vol.7 , Issue.4
    • Mukhopadhyay, A.1    Maulik, U.2    Bandyopdhyay, S.3
  • 13
    • 0042354626 scopus 로고    scopus 로고
    • Strategy for Elucidating Differentially Expressed Genes in Leiomyomata Identified by Microarray Technology
    • W. H. Catherino, C. Prupas, J. C. Tsibris, P. C. Leppert and M. Payson, Strategy for Elucidating Differentially Expressed Genes in Leiomyomata Identified by Microarray Technology, Fertil Steril, vol. 80, pp. 282-290, 2003.
    • (2003) Fertil Steril , vol.80 , pp. 282-290
    • Catherino, W.H.1    Prupas, C.2    Tsibris, J.C.3    Leppert, P.C.4    Payson, M.5
  • 14
    • 4544341015 scopus 로고    scopus 로고
    • Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments
    • G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, pp. 3, 2004.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1 , pp. 3
    • Smyth, G.1
  • 15
    • 85056053539 scopus 로고    scopus 로고
    • Association Rule Based Similarity Measures for the Clustering of Gene Expression Data
    • P. Sethi and S. Alagiriswamy, Association Rule Based Similarity Measures for the Clustering of Gene Expression Data, The Open Medical Informatics Journal, vol. 4, pp. 63-73, 2010.
    • (2010) The Open Medical Informatics Journal , vol.4 , pp. 63-73
    • Sethi, P.1    Alagiriswamy, S.2
  • 18
    • 0037245822 scopus 로고    scopus 로고
    • Mining Gene Expression Databases for Association Rules
    • C. Creighton, and S. Hanash, Mining Gene Expression Databases for Association Rules, Bioinformatics, vol. 19, no. 1, pp. 79-86, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 20
    • 84886368789 scopus 로고    scopus 로고
    • Interestingness Measure for Mining Spatial Gene Expression Data using Association Rule
    • M. Anandhavalli, M. K. Ghose, and K. Gauthaman, Interestingness Measure for Mining Spatial Gene Expression Data using Association Rule, Journal of Computing, vol. 2, no. 1, pp. 110-114, 2010.
    • (2010) Journal of Computing , vol.2 , Issue.1 , pp. 110-114
    • Anandhavalli, M.1    Ghose, M.K.2    Gauthaman, K.3
  • 21
    • 0036376993 scopus 로고    scopus 로고
    • Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments
    • S. Dudoit, Y. Yang, T. Speed, and M. Callow, Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments, Statistica Sinica, vol. 12, pp. 111-139, 2002.
    • (2002) Statistica Sinica , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.2    Speed, T.3    Callow, M.4
  • 22
    • 32544432046 scopus 로고    scopus 로고
    • Comparison of Various Statistical Methods for Identifying Differential Gene Expression in Replicated Microarray Data
    • S. Y. Kim, J. W. Lee, and I. S. Sohn, Comparison of Various Statistical Methods for Identifying Differential Gene Expression in Replicated Microarray Data, Statistical Methods in Medical Research, vol. 15, pp. 3-20, 2006.
    • (2006) Statistical Methods in Medical Research , vol.15 , pp. 3-20
    • Kim, S.Y.1    Lee, J.W.2    Sohn, I.S.3
  • 23
    • 14244263713 scopus 로고    scopus 로고
    • Gene Expression Profiling of Leiomyoma and Myometrial Smooth Muscle Cells in Response to Transforming Growth Factor-α
    • March
    • X. Luo, L. Ding, J. Xu and N. Chegini, Gene Expression Profiling of Leiomyoma and Myometrial Smooth Muscle Cells in Response to Transforming Growth Factor-α, Endocrinology, vol. 146, no. 3, pp. 1097-1118, March 2005.
    • (2005) Endocrinology , vol.146 , pp. 1097-1118
    • Luo, X.1    Ding, L.2    Xu, J.3    Chegini, N.4
  • 24
    • 21444454257 scopus 로고    scopus 로고
    • False Discovery Rate Sensitivity and Sample Size for Microarray Studies
    • Y. Pawitan, S. Michiels, S. Koscielny, A. Gusnanto, and A. Ploner, False Discovery Rate, Sensitivity and Sample Size for Microarray Studies, Bioinformatics, vol. 21, pp. 3017-3024, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 25
    • 0002437730 scopus 로고
    • A test for normality of observations and regression residuals
    • C.M. Jarque and A.K. Bera, A test for normality of observations and regression residuals, International Statistical Review, vol. 55, no. 2, pp. 163-172, 1987.
    • (1987) International Statistical Review , vol.55 , Issue.2 , pp. 163-172
    • Jarque, C.M.1    Bera, A.K.2
  • 26
    • 79960857685 scopus 로고    scopus 로고
    • Building Interpretable Fuzzy Models for High Dimentional Data Analysis in Cancer Diagnosis
    • Z. Wang and V. Palade, Building Interpretable Fuzzy Models for High Dimentional Data Analysis in Cancer Diagnosis, BMC Genomics, no. 12(S2):S5, 2011.
    • (2011) BMC Genomics , vol.12 , Issue.S2 , pp. S5
    • Wang, Z.1    Palade, V.2
  • 28
    • 78649720287 scopus 로고    scopus 로고
    • Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble of Pareto- Optimal Solutions for Gene Marker Identification
    • A. Mukhopadhyay, S. Bandyopadhyay and U. Maulik, Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble of Pareto- Optimal Solutions for Gene Marker Identification, PLoS One, vol. 5, no. 11, pp. e13803, 2010.
    • (2010) PLoS One , vol.5 , Issue.11
    • Mukhopadhyay, A.1    Bandyopadhyay, S.2    Maulik, U.3
  • 29
    • 84873488467 scopus 로고    scopus 로고
    • Predicting Annotated HIV-1Human PPIs using a Biclustering Approach to Association Rule Mining
    • Kolkata, India, November
    • S. Ray, A. Mukhopadhyay and U. Maulik, Predicting Annotated HIV-1Human PPIs using a Biclustering Approach to Association Rule Mining, In Proc. EAIT-2012, pp. 28-31, Kolkata, India, November 2012.
    • (2012) Proc. EAIT-2012 , pp. 28-31
    • Ray, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 33
    • 61449477534 scopus 로고    scopus 로고
    • GoldenGate Assay for DNA Methylation Profiling
    • M. Bibikova and J. B. Fan, GoldenGate Assay for DNA Methylation Profiling, Methods in Molecular Biology, vol. 507, pp. 149-163, 2009.
    • (2009) Methods in Molecular Biology , vol.507 , pp. 149-163
    • Bibikova, M.1    Fan, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.