메뉴 건너뛰기




Volumn 37, Issue 24, 2016, Pages 5726-5748

A novel unsupervised bee colony optimization (UBCO) method for remote-sensing image classification: a case study in a heterogeneous marsh area

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); GENETIC ALGORITHMS; IMAGE CLASSIFICATION; ITERATIVE METHODS; LAND USE; MOBILE TELECOMMUNICATION SYSTEMS; PARTICLE SWARM OPTIMIZATION (PSO); URBAN GROWTH; WETLANDS;

EID: 84997282857     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1246771     Document Type: Article
Times cited : (5)

References (55)
  • 1
    • 84901651305 scopus 로고    scopus 로고
    • Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using Rapideye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers
    • E.Adam, O.Mutanga, J.Odindi, and E.M.Abdel-Rahman. 2014. “Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using Rapideye Imagery:Evaluating the Performance of Random Forest and Support Vector Machines Classifiers.” International Journal of Remote Sensing 35:3440–3458. doi:10.1080/01431161.2014.903435.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 2
    • 33748309031 scopus 로고    scopus 로고
    • Antpart: An Algorithm for the Unsupervised Classification Problem Using Ants
    • L.Admane, K.Benatchba, M.Koudil, L.Siad, and S.Maziz. 2006. “Antpart:An Algorithm for the Unsupervised Classification Problem Using Ants.” Applied Mathematics and Computation 180:16–28. doi:10.1016/j.amc.2005.11.130.
    • (2006) Applied Mathematics and Computation , vol.180 , pp. 16-28
    • Admane, L.1    Benatchba, K.2    Koudil, M.3    Siad, L.4    Maziz, S.5
  • 3
    • 33745088147 scopus 로고    scopus 로고
    • Land Cover Classification from MODIS EVI Times-Series Data Using SOM Neural Network
    • H.Bagan, Q.X.Wang, M.Watanabe, Y.H.Yang, and J.W.Ma. 2005. “Land Cover Classification from MODIS EVI Times-Series Data Using SOM Neural Network.” International Journal of Remote Sensing 26:4999–5012. doi:10.1080/01431160500206650.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 4999-5012
    • Bagan, H.1    Wang, Q.X.2    Watanabe, M.3    Yang, Y.H.4    Ma, J.W.5
  • 5
    • 20944440113 scopus 로고    scopus 로고
    • GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data
    • E.Bartholome, and A.S.Belward. 2005. “GLC2000:A New Approach to Global Land Cover Mapping from Earth Observation Data.” International Journal of Remote Sensing 26:1959–1977. doi:10.1080/01431160412331291297.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1959-1977
    • Bartholome, E.1    Belward, A.S.2
  • 6
    • 77950925118 scopus 로고    scopus 로고
    • Band Selection for Hyperspectral Images Based on Parallel Particle Swarm Optimization Schemes
    • Cape Town: July
    • Y.L.Chang, J.P.Fang, L.N.Chang, J.A.Benediktsson, H.A.Ren, and K.S.Chen. 2009. “Band Selection for Hyperspectral Images Based on Parallel Particle Swarm Optimization Schemes.” In IGARSS09. Cape Town, July 12–17. Piscataway, NJ:IEEE Press.
    • (2009) IGARSS09
    • Chang, Y.L.1    Fang, J.P.2    Chang, L.N.3    Benediktsson, J.A.4    Ren, H.A.5    Chen, K.S.6
  • 7
    • 0024163748 scopus 로고
    • Using Cluster-Analysis to Improve the Selection of Training Statistics in Classifying Remotely Sensed Data
    • E.Chuvieco, and R.G.Congalton. 1988. “Using Cluster-Analysis to Improve the Selection of Training Statistics in Classifying Remotely Sensed Data.” Photogrammetric Engineering and Remote Sensing 54:1275–1281.
    • (1988) Photogrammetric Engineering and Remote Sensing , vol.54 , pp. 1275-1281
    • Chuvieco, E.1    Congalton, R.G.2
  • 8
    • 0032552457 scopus 로고    scopus 로고
    • Classification by Progressive Generalization: A New Automated Methodology for Remote Sensing Multichannel Data
    • J.Cihlar, Q.H.Xia, J.Chen, J.Beaubien, K.Fung, and R.Latifovic. 1998. “Classification by Progressive Generalization:A New Automated Methodology for Remote Sensing Multichannel Data.” International Journal of Remote Sensing 19:2685–2704. doi:10.1080/014311698214451.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 2685-2704
    • Cihlar, J.1    Xia, Q.H.2    Chen, J.3    Beaubien, J.4    Fung, K.5    Latifovic, R.6
  • 9
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • R.G.Congalton, 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37:35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 12
    • 84997291887 scopus 로고    scopus 로고
    • The Artificial Bee Colony Algorithm for Unsupervised Classification of Meteorological Satellite Images
    • R.Deriche, and H.Fizazi. 2015. “The Artificial Bee Colony Algorithm for Unsupervised Classification of Meteorological Satellite Images.” International Journal of Computer Applications 112:28–32.
    • (2015) International Journal of Computer Applications , vol.112 , pp. 28-32
    • Deriche, R.1    Fizazi, H.2
  • 13
    • 0037053924 scopus 로고    scopus 로고
    • Unsupervised Classification of Satellite Imagery: Choosing a Good Algorithm
    • T.Duda, and M.Canty. 2002. “Unsupervised Classification of Satellite Imagery:Choosing a Good Algorithm.” International Journal of Remote Sensing 23:2193–2212. doi:10.1080/01431160110078467.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 2193-2212
    • Duda, T.1    Canty, M.2
  • 15
    • 71349086465 scopus 로고    scopus 로고
    • Remote Sensing of Land Cover Classes as Type 2 Fuzzy Sets
    • P.F.Fisher, 2010. “Remote Sensing of Land Cover Classes as Type 2 Fuzzy Sets.” Remote Sensing of Environment 114:309–321. doi:10.1016/j.rse.2009.09.004.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 309-321
    • Fisher, P.F.1
  • 16
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • G.M.Foody, 2004. “Thematic Map Comparison:Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering & Remote Sensing 70:627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 17
    • 46249084070 scopus 로고    scopus 로고
    • An Unsupervised Method of Classifying Remotely Sensed Images Using Kohonen Self-Organizing Maps and Agglomerative Hierarchical Clustering Methods
    • M.L.Goncalves, M.L.A.Netto, J.A.F.Costa, and J.Zullo. 2008. “An Unsupervised Method of Classifying Remotely Sensed Images Using Kohonen Self-Organizing Maps and Agglomerative Hierarchical Clustering Methods.” International Journal of Remote Sensing 29:3171–3207. doi:10.1080/01431160701442146.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 3171-3207
    • Goncalves, M.L.1    Netto, M.L.A.2    Costa, J.A.F.3    Zullo, J.4
  • 19
    • 79959937272 scopus 로고    scopus 로고
    • Multilevel Thresholding Selection Based on the Artificial Bee Colony Algorithm for Image Segmentation
    • M.H.Horng, 2011. “Multilevel Thresholding Selection Based on the Artificial Bee Colony Algorithm for Image Segmentation.” Expert Systems with Applications 38:13785–13791. doi:10.1016/j.eswa.2011.04.180.
    • (2011) Expert Systems with Applications , vol.38 , pp. 13785-13791
    • Horng, M.H.1
  • 20
    • 70350779978 scopus 로고    scopus 로고
    • Sensitivity Analysis of a Decision Tree Classification to Input Data Errors Using a General Monte Carlo Error Sensitivity Model
    • Z.Huang, and S.W.Laffan. 2009. “Sensitivity Analysis of a Decision Tree Classification to Input Data Errors Using a General Monte Carlo Error Sensitivity Model.” International Journal of Geographical Information Science 23:1433–1452. doi:10.1080/13658810802634949.
    • (2009) International Journal of Geographical Information Science , vol.23 , pp. 1433-1452
    • Huang, Z.1    Laffan, S.W.2
  • 21
    • 77950369345 scopus 로고    scopus 로고
    • Data Clustering: 50 Years beyond K-Means
    • A.K.Jain, 2010. “Data Clustering:50 Years beyond K-Means.” Pattern Recognition Letters 31:651–666. doi:10.1016/j.patrec.2009.09.011.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 22
    • 23944479499 scopus 로고    scopus 로고
    • Modeling the Effects of Two Different Land Cover Change Data Sets on the Carbon Stocks of Plants and Soils in Concert with CO2 and Climate Change
    • A.K.Jain, and X.J.Yang. 2005. “Modeling the Effects of Two Different Land Cover Change Data Sets on the Carbon Stocks of Plants and Soils in Concert with CO2 and Climate Change.” Global Biogeochemical Cycles 19. doi:10.1029/2004gb002349.
    • (2005) Global Biogeochemical Cycles , vol.19
    • Jain, A.K.1    Yang, X.J.2
  • 23
    • 0037456928 scopus 로고    scopus 로고
    • Queen-Bee Evolution for Genetic Algorithms
    • S.H.Jung, 2003. “Queen-Bee Evolution for Genetic Algorithms.” Electronics Letters 39:575–576. doi:10.1049/El:20030383.
    • (2003) Electronics Letters , vol.39 , pp. 575-576
    • Jung, S.H.1
  • 24
    • 67349273050 scopus 로고    scopus 로고
    • A Comparative Study of Artificial Bee Colony Algorithm
    • D.Karaboga, and B.Akay. 2009. “A Comparative Study of Artificial Bee Colony Algorithm.” Applied Mathematics and Computation 214:108–132. doi:10.1016/j.amc.2009.03.090.
    • (2009) Applied Mathematics and Computation , vol.214 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 25
    • 35148821762 scopus 로고    scopus 로고
    • A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
    • D.Karaboga, and B.Basturk. 2007. “A Powerful and Efficient Algorithm for Numerical Function Optimization:Artificial Bee Colony (ABC) Algorithm.” Journal of Global Optimization 39:459–471. doi:10.1007/s10898-007-9149-x.
    • (2007) Journal of Global Optimization , vol.39 , pp. 459-471
    • Karaboga, D.1    Basturk, B.2
  • 26
    • 34548479029 scopus 로고    scopus 로고
    • On the Performance of Artificial Bee Colony (ABC) Algorithm
    • D.Karaboga, and B.Basturk. 2008. “On the Performance of Artificial Bee Colony (ABC) Algorithm.” Applied Soft Computing 8:687–697. doi:10.1016/j.asoc.2007.05.007.
    • (2008) Applied Soft Computing , vol.8 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 27
    • 84901190234 scopus 로고    scopus 로고
    • A Comprehensive Survey: Artificial Bee Colony (ABC) Algorithm and Applications
    • D.Karaboga, B.Gorkemli, C.Ozturk, and N.Karaboga. 2014. “A Comprehensive Survey:Artificial Bee Colony (ABC) Algorithm and Applications.” Artificial Intelligence Review 42:21–57. doi:10.1007/s10462-012-9328-0.
    • (2014) Artificial Intelligence Review , vol.42 , pp. 21-57
    • Karaboga, D.1    Gorkemli, B.2    Ozturk, C.3    Karaboga, N.4
  • 28
    • 0037500103 scopus 로고    scopus 로고
    • From Space to Species: Ecological Applications for Remote Sensing
    • J.T.Kerr, and M.Ostrovsky. 2003. “From Space to Species:Ecological Applications for Remote Sensing.” Trends in Ecology & Evolution 18:299–305. doi:10.1016/S0169-5347(03)00071-5.
    • (2003) Trends in Ecology & Evolution , vol.18 , pp. 299-305
    • Kerr, J.T.1    Ostrovsky, M.2
  • 29
    • 23844528211 scopus 로고    scopus 로고
    • Cluster Center Initialization Algorithm for K-Means Clustering
    • S.S.Khan, and A.Ahmad. 2004. “Cluster Center Initialization Algorithm for K-Means Clustering.” Pattern Recognition Letters 25:1293–1302. doi:10.1016/j.patrec.2004.04.007.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1293-1302
    • Khan, S.S.1    Ahmad, A.2
  • 31
    • 84971601515 scopus 로고    scopus 로고
    • Performance Evaluation of Cluster Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets
    • H.P.Li, S.Q.Zhang, X.H.Ding, C.Zhang, and P.Dale. 2016. “Performance Evaluation of Cluster Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets.” Remote Sensing 8:295. doi:10.3390/rs8040295.
    • (2016) Remote Sensing , vol.8 , pp. 295
    • Li, H.P.1    Zhang, S.Q.2    Ding, X.H.3    Zhang, C.4    Dale, P.5
  • 32
    • 79956094112 scopus 로고    scopus 로고
    • An Innovative Method to Classify Remote-Sensing Images Using Ant Colony Optimization
    • X.P.Liu, X.Li, L.Liu, J.Q.He, and B.Ai. 2008. “An Innovative Method to Classify Remote-Sensing Images Using Ant Colony Optimization.” IEEE Transactions on Geoscience and Remote Sensing 46:4198–4208. doi:10.1109/Tgrs.2008.2001754.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , pp. 4198-4208
    • Liu, X.P.1    Li, X.2    Liu, L.3    He, J.Q.4    Ai, B.5
  • 33
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • D.Lu, and Q.Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28:823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 34
    • 0033715579 scopus 로고    scopus 로고
    • Genetic Algorithm-Based Clustering Technique
    • U.Maulik, and S.Bandyopadhyay. 2000. “Genetic Algorithm-Based Clustering Technique.” Pattern Recognition 33:1455–1465. doi:10.1016/S0031-3203(99)00137-5.
    • (2000) Pattern Recognition , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 35
    • 4344614511 scopus 로고    scopus 로고
    • Classification of Hyperspectral Remote Sensing Images with Support Vector Machines
    • F.Melgani, and L.Bruzzone. 2004. “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42:1778–1790. doi:10.1109/Tgrs.2004.831865.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 36
    • 0036788925 scopus 로고    scopus 로고
    • Mapping Forest Post-Fire Canopy Consumption in Several Overstory Types Using Multi-Temporal Landsat TM and ETM Data
    • J.D.Miller, and S.R.Yool. 2002. “Mapping Forest Post-Fire Canopy Consumption in Several Overstory Types Using Multi-Temporal Landsat TM and ETM Data.” Remote Sensing of Environment 82:481–496. doi:10.1016/S0034-4257(02)00071-8.
    • (2002) Remote Sensing of Environment , vol.82 , pp. 481-496
    • Miller, J.D.1    Yool, S.R.2
  • 37
    • 79960565655 scopus 로고    scopus 로고
    • Evaluation of Parallel Particle Swarm Optimization Algorithms within the CUDA™ Architecture
    • L.Mussi, F.Daolio, and S.Cagnoni. 2011. “Evaluation of Parallel Particle Swarm Optimization Algorithms within the CUDA™ Architecture.” Information Sciences 181:4642–4657. doi:10.1016/j.ins.2010.08.045.
    • (2011) Information Sciences , vol.181 , pp. 4642-4657
    • Mussi, L.1    Daolio, F.2    Cagnoni, S.3
  • 38
    • 79959669722 scopus 로고    scopus 로고
    • Improved Land Cover Mapping using Random Forests Combined with Landsat Thematic Mapper Imagery and Ancillary Geographic Data
    • X.D.Na, S.Q.Zhang, X.F.Li, H.A.Yu, and C.Y.Liu. 2010. “Improved Land Cover Mapping using Random Forests Combined with Landsat Thematic Mapper Imagery and Ancillary Geographic Data.” Photogrammetric Engineering & Remote Sensing 76:833–840. doi:10.14358/PERS.76.7.833.
    • (2010) Photogrammetric Engineering & Remote Sensing , vol.76 , pp. 833-840
    • Na, X.D.1    Zhang, S.Q.2    Li, X.F.3    Yu, H.A.4    Liu, C.Y.5
  • 39
    • 77949605117 scopus 로고    scopus 로고
    • Parallel Artificial Bee Colony (PABC) Algorithm
    • Coimbatore: Decemeber
    • H.Narasimhan, 2009. “Parallel Artificial Bee Colony (PABC) Algorithm.” In NaBIC09, Coimbatore, Decemeber 9–11. Piscataway, NJ:IEEE Press.
    • (2009) NaBIC09
    • Narasimhan, H.1
  • 40
    • 75449091147 scopus 로고    scopus 로고
    • Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms
    • J.R.Otukei, and T.Blaschke. 2010. “Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms.” International Journal of Applied Earth Observation and Geoinformation 12:S27–S31. doi:10.1016/j.jag.2009.11.002.
    • (2010) International Journal of Applied Earth Observation and Geoinformation , vol.12 , pp. S27-S31
    • Otukei, J.R.1    Blaschke, T.2
  • 41
    • 41549156538 scopus 로고    scopus 로고
    • Artificial Immune-Based Supervised Classifier for Land-Cover Classification
    • M.Pal, 2008. “Artificial Immune-Based Supervised Classifier for Land-Cover Classification.” International Journal of Remote Sensing 29:2273–2291. doi:10.1080/01431160701408402.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 2273-2291
    • Pal, M.1
  • 43
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • R.G.Pontius, and M.Millones. 2011. “Death to Kappa:Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32:4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 46
    • 3042701430 scopus 로고    scopus 로고
    • A Spectral Library for A Semi-Arid Wetland and Its Application to Studies of Wetland Degradation Using Hyperspectral and Multispectral Data
    • T.Schmid, M.Koch, J.Gumuzzio, and P.M.Mather. 2004. “A Spectral Library for A Semi-Arid Wetland and Its Application to Studies of Wetland Degradation Using Hyperspectral and Multispectral Data.” International Journal of Remote Sensing 25:2485–2496. doi:10.1080/0143116031000117001.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 2485-2496
    • Schmid, T.1    Koch, M.2    Gumuzzio, J.3    Mather, P.M.4
  • 47
    • 1242332729 scopus 로고    scopus 로고
    • Unsupervised Classification of Hyperspectral Data: An ICA Mixture Model Based Approach
    • C.A.Shah, M.K.Arora, and P.K.Varshney. 2004. “Unsupervised Classification of Hyperspectral Data:An ICA Mixture Model Based Approach.” International Journal of Remote Sensing 25:481–487. doi:10.1080/01431160310001618040.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 481-487
    • Shah, C.A.1    Arora, M.K.2    Varshney, P.K.3
  • 48
    • 79961236431 scopus 로고    scopus 로고
    • Artificial Bee Colony Based Data Mining Algorithms for Classification Tasks
    • M.A.Shukran, Y.Y.Chung, W.Yeh, N.Wahid, and A.M.Zaidi. 2011. “Artificial Bee Colony Based Data Mining Algorithms for Classification Tasks.” Modern Applied Science 5:217–231. doi:10.5539/mas.v5n4p217.
    • (2011) Modern Applied Science , vol.5 , pp. 217-231
    • Shukran, M.A.1    Chung, Y.Y.2    Yeh, W.3    Wahid, N.4    Zaidi, A.M.5
  • 49
    • 70249106481 scopus 로고    scopus 로고
    • Sampling Designs for Accuracy Assessment of Land Cover
    • S.V.Stehman, 2009. “Sampling Designs for Accuracy Assessment of Land Cover.” International Journal of Remote Sensing 30:5243–5272. doi:10.1080/01431160903131000.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 5243-5272
    • Stehman, S.V.1
  • 50
    • 0003853519 scopus 로고
    • Differential Evolution – a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces
    • Berkley: International Computer Science Institute
    • P.Storn, and K.Price. 1995. “Differential Evolution – a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.” Technical Report, Berkley, International Computer Science Institute.
    • (1995) Technical Report
    • Storn, P.1    Price, K.2
  • 51
    • 33845451604 scopus 로고    scopus 로고
    • Effects of Climatic Change on Evapotranspiration in Zhalong Wetland, Northeast China
    • H.Wang, S.G.Xu, and L.S.Sun. 2006. “Effects of Climatic Change on Evapotranspiration in Zhalong Wetland, Northeast China.” Chinese Geographical Science 16:265–269. doi:10.1007/s11769-006-0265-1.
    • (2006) Chinese Geographical Science , vol.16 , pp. 265-269
    • Wang, H.1    Xu, S.G.2    Sun, L.S.3
  • 53
    • 34047138873 scopus 로고    scopus 로고
    • Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data
    • C.Wright, and A.Gallant. 2007. “Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data.” Remote Sensing of Environment 107:582–605. doi:10.1016/j.rse.2006.10.019.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 582-605
    • Wright, C.1    Gallant, A.2
  • 54
    • 0036788924 scopus 로고    scopus 로고
    • Characterization of Forest Types in Northeastern China, Using Multi-Temporal SPOT-4 VEGETATION Sensor Data
    • X.M.Xiao, S.Boles, J.Y.Liu, D.F.Zhuang, and M.L.Liu. 2002. “Characterization of Forest Types in Northeastern China, Using Multi-Temporal SPOT-4 VEGETATION Sensor Data.” Remote Sensing of Environment 82:335–348. doi:10.1016/S0034-4257(02)00051-2.
    • (2002) Remote Sensing of Environment , vol.82 , pp. 335-348
    • Xiao, X.M.1    Boles, S.2    Liu, J.Y.3    Zhuang, D.F.4    Liu, M.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.