메뉴 건너뛰기




Volumn 158, Issue , 2016, Pages 174-179

Variable space boosting partial least squares for multivariate calibration of near-infrared spectroscopy

Author keywords

Boosting; Ensemble modeling; Near infrared; Partial least squares; Variable space

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; CALCULATION; CALIBRATION; COMPARATIVE STUDY; MATHEMATICAL ANALYSIS; MONTE CARLO METHOD; NEAR INFRARED SPECTROSCOPY; PARTIAL LEAST SQUARES REGRESSION; PREDICTIVE VALUE; PRIORITY JOURNAL; PROCESS OPTIMIZATION; RANDOMIZATION; SCORING SYSTEM;

EID: 84996593791     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2016.08.005     Document Type: Article
Times cited : (32)

References (42)
  • 1
    • 84929932234 scopus 로고    scopus 로고
    • Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances
    • [1] Qu, J.H., Liu, D., Cheng, J.H., Sun, D.W., Ma, J., Pu, H.B., Zeng, X., Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances. Crit. Rev. Food Sci. 55 (2015), 1939–1954.
    • (2015) Crit. Rev. Food Sci. , vol.55 , pp. 1939-1954
    • Qu, J.H.1    Liu, D.2    Cheng, J.H.3    Sun, D.W.4    Ma, J.5    Pu, H.B.6    Zeng, X.7
  • 2
    • 84889661171 scopus 로고    scopus 로고
    • Low level drug product API form analysis - Avalide tablet NIR quantitative method development and robustness challenges
    • [2] Pan, D.H., Crull, G., Yin, S., Grosso, J., Low level drug product API form analysis - Avalide tablet NIR quantitative method development and robustness challenges. J. Pharm. Biomed. Anal. 89 (2014), 268–275.
    • (2014) J. Pharm. Biomed. Anal. , vol.89 , pp. 268-275
    • Pan, D.H.1    Crull, G.2    Yin, S.3    Grosso, J.4
  • 3
    • 84929285753 scopus 로고    scopus 로고
    • Evaluation of near-infrared chemical imaging for the prediction of surface water quality parameters
    • [3] Reilly, A.O., Coffey, R., Gowen, A., Cummins, E., Evaluation of near-infrared chemical imaging for the prediction of surface water quality parameters. Int. J. Environ. Anal. Chem. 95 (2015), 403–418.
    • (2015) Int. J. Environ. Anal. Chem. , vol.95 , pp. 403-418
    • Reilly, A.O.1    Coffey, R.2    Gowen, A.3    Cummins, E.4
  • 4
    • 84906243254 scopus 로고    scopus 로고
    • Characterization of near-infrared spectral variance in the authentication of skim and nonfat dry milk powder collection using ANOVA-PCA, pooled-ANOVA, and partial least-squares regression
    • [4] Harnly, J.M., Harrington, P.B., Botros, L.L., Jablonski, J., Chang, C., Bergana, M.M., Wehling, P., Downey, G., Potts, A.R., Moore, J.C., Characterization of near-infrared spectral variance in the authentication of skim and nonfat dry milk powder collection using ANOVA-PCA, pooled-ANOVA, and partial least-squares regression. J. Agric. Food Chem. 62 (2014), 8060–8067.
    • (2014) J. Agric. Food Chem. , vol.62 , pp. 8060-8067
    • Harnly, J.M.1    Harrington, P.B.2    Botros, L.L.3    Jablonski, J.4    Chang, C.5    Bergana, M.M.6    Wehling, P.7    Downey, G.8    Potts, A.R.9    Moore, J.C.10
  • 5
    • 84924021763 scopus 로고    scopus 로고
    • Improvement of NIR model by fractional order Savitzky-Golay derivation (FOSGD) coupled with wavelength selection
    • [5] Tong, P.J., Du, Y.P., Zheng, K.Y., Wu, T., Wang, J.J., Improvement of NIR model by fractional order Savitzky-Golay derivation (FOSGD) coupled with wavelength selection. Chemom. Intell. Lab. Syst. 143 (2015), 40–48.
    • (2015) Chemom. Intell. Lab. Syst. , vol.143 , pp. 40-48
    • Tong, P.J.1    Du, Y.P.2    Zheng, K.Y.3    Wu, T.4    Wang, J.J.5
  • 6
    • 78650313708 scopus 로고    scopus 로고
    • Multivariate calibration methods in near-infrared spectroscopic analysis
    • [6] Shao, X.G., Bian, X.H., Liu, J.J., Zhang, M., Cai, W.S., Multivariate calibration methods in near-infrared spectroscopic analysis. Anal. Methods 2 (2010), 1662–1666.
    • (2010) Anal. Methods , vol.2 , pp. 1662-1666
    • Shao, X.G.1    Bian, X.H.2    Liu, J.J.3    Zhang, M.4    Cai, W.S.5
  • 7
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • [7] Thissen, U., Ustun, B., Melssen, W.J., Buydens, L.M.C., Multivariate calibration with least-squares support vector machines. Anal. Chem. 76 (2004), 3099–3105.
    • (2004) Anal. Chem. , vol.76 , pp. 3099-3105
    • Thissen, U.1    Ustun, B.2    Melssen, W.J.3    Buydens, L.M.C.4
  • 8
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
    • [8] Wold, S., Ruhe, A., Wold, H., Dunn, W.J., The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5 (1984), 735–743.
    • (1984) SIAM J. Sci. Stat. Comput. , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.J.4
  • 9
    • 84906770741 scopus 로고    scopus 로고
    • Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC)
    • [9] Tran, T.N., Afanador, N.L., Buydens, L.M.C., Blanchet, L., Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC). Chemom. Intell. Lab. Syst. 138 (2014), 153–160.
    • (2014) Chemom. Intell. Lab. Syst. , vol.138 , pp. 153-160
    • Tran, T.N.1    Afanador, N.L.2    Buydens, L.M.C.3    Blanchet, L.4
  • 10
    • 84937047158 scopus 로고    scopus 로고
    • Optimization of parameter selection for partial least squares model development
    • [10] Zhao, N., Wu, Z.S., Zhang, Q., Shi, X.Y., Ma, Q., Qiao, Y.J., Optimization of parameter selection for partial least squares model development. Sci. Rep. 5 (2015), 11647–11656.
    • (2015) Sci. Rep. , vol.5 , pp. 11647-11656
    • Zhao, N.1    Wu, Z.S.2    Zhang, Q.3    Shi, X.Y.4    Ma, Q.5    Qiao, Y.J.6
  • 11
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach squares regression to partial least squares regression
    • [11] de Jong, S., SIMPLS: an alternative approach squares regression to partial least squares regression. Chemom. Intell. Lab. Syst. 18:3 (1993), 251–263.
    • (1993) Chemom. Intell. Lab. Syst. , vol.18 , Issue.3 , pp. 251-263
    • de Jong, S.1
  • 12
    • 77955714047 scopus 로고    scopus 로고
    • Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares
    • [12] Tan, C., Wang, J.Y., Wu, T., Qin, X., Li, M.L., Determination of nicotine in tobacco samples by near-infrared spectroscopy and boosting partial least squares. Vib. Spectrosc. 54 (2010), 35–41.
    • (2010) Vib. Spectrosc. , vol.54 , pp. 35-41
    • Tan, C.1    Wang, J.Y.2    Wu, T.3    Qin, X.4    Li, M.L.5
  • 13
    • 84930618893 scopus 로고    scopus 로고
    • An improved ensemble model for the quantitative analysis of infrared spectra
    • [13] Li, Z.G., Lv, J.T., Si, G.Y., Zhang, Y., Wang, Q.Y., Liu, S., An improved ensemble model for the quantitative analysis of infrared spectra. Chemom. Intell. Lab. Syst. 146 (2015), 211–220.
    • (2015) Chemom. Intell. Lab. Syst. , vol.146 , pp. 211-220
    • Li, Z.G.1    Lv, J.T.2    Si, G.Y.3    Zhang, Y.4    Wang, Q.Y.5    Liu, S.6
  • 14
    • 84863653807 scopus 로고    scopus 로고
    • A strategy of small sample modeling for multivariate regression based on improved boosting PLS
    • [14] Zhang, Q.X., Li, Q.B., Zhang, G.J., A strategy of small sample modeling for multivariate regression based on improved boosting PLS. Anal. Methods 4 (2012), 2039–2047.
    • (2012) Anal. Methods , vol.4 , pp. 2039-2047
    • Zhang, Q.X.1    Li, Q.B.2    Zhang, G.J.3
  • 15
    • 14744269749 scopus 로고    scopus 로고
    • Boosting partial least squares
    • [15] Zhang, M.H., Xu, Q.S., Massart, D.L., Boosting partial least squares. Anal. Chem. 77 (2005), 1423–1431.
    • (2005) Anal. Chem. , vol.77 , pp. 1423-1431
    • Zhang, M.H.1    Xu, Q.S.2    Massart, D.L.3
  • 16
    • 84863021216 scopus 로고    scopus 로고
    • Boosting partial least-squares discriminant analysis with application to near infrared spectroscopic tea variety discrimination
    • [16] Tan, S.M., Luo, R.M., Zhou, Y.P., Xu, H., Song, D.D., Ze, T., Yang, T.M., Nie, Y., Boosting partial least-squares discriminant analysis with application to near infrared spectroscopic tea variety discrimination. J. Chemom. 26 (2012), 34–39.
    • (2012) J. Chemom. , vol.26 , pp. 34-39
    • Tan, S.M.1    Luo, R.M.2    Zhou, Y.P.3    Xu, H.4    Song, D.D.5    Ze, T.6    Yang, T.M.7    Nie, Y.8
  • 17
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • [17] Shao, X.G., Bian, X.H., Cai, W.S., An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 666 (2010), 32–37.
    • (2010) Anal. Chim. Acta , vol.666 , pp. 32-37
    • Shao, X.G.1    Bian, X.H.2    Cai, W.S.3
  • 18
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
    • [18] Shinzawa, H., Jiang, J.H., Ritthiruangdej, P., Ozaki, Y., Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 20 (2006), 436–444.
    • (2006) J. Chemom. , vol.20 , pp. 436-444
    • Shinzawa, H.1    Jiang, J.H.2    Ritthiruangdej, P.3    Ozaki, Y.4
  • 19
    • 84855585849 scopus 로고    scopus 로고
    • Determination of diesel cetane number by consensus modeling based on uninformative variable elimination
    • [19] Li, Y.K., Determination of diesel cetane number by consensus modeling based on uninformative variable elimination. Anal. Methods 4 (2012), 254–258.
    • (2012) Anal. Methods , vol.4 , pp. 254-258
    • Li, Y.K.1
  • 21
    • 84904315460 scopus 로고    scopus 로고
    • Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit
    • [21] Wang, A.C., Xie, L.J., Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. J. Food Eng. 143 (2014), 17–24.
    • (2014) J. Food Eng. , vol.143 , pp. 17-24
    • Wang, A.C.1    Xie, L.J.2
  • 23
    • 84861193420 scopus 로고    scopus 로고
    • Again about partial least squares and feature selection
    • [23] Zerzucha, P., Walczak, B., Again about partial least squares and feature selection. Chemom. Intell. Lab. Syst. 115 (2012), 9–17.
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 9-17
    • Zerzucha, P.1    Walczak, B.2
  • 24
    • 38149087476 scopus 로고    scopus 로고
    • A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra
    • [24] Cai, W.S., Li, Y.K., Shao, X.G., A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom. Intell. Lab. Syst. 90 (2008), 188–194.
    • (2008) Chemom. Intell. Lab. Syst. , vol.90 , pp. 188-194
    • Cai, W.S.1    Li, Y.K.2    Shao, X.G.3
  • 25
    • 40849123845 scopus 로고    scopus 로고
    • An ensemble of Monte Carlo uninformative variable elimination for wavelength selection
    • [25] Han, Q.J., Wu, H.L., Cai, C.B., Xu, L., Yu, R.Q., An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Anal. Chim. Acta 612 (2008), 121–125.
    • (2008) Anal. Chim. Acta , vol.612 , pp. 121-125
    • Han, Q.J.1    Wu, H.L.2    Cai, C.B.3    Xu, L.4    Yu, R.Q.5
  • 26
    • 65649132723 scopus 로고    scopus 로고
    • A wavelength selection method based on randomization test for near-infrared spectral analysis
    • [26] Xu, H., Liu, Z.C., Cai, W.S., Shao, X.G., A wavelength selection method based on randomization test for near-infrared spectral analysis. Chemom. Intell. Lab. Syst. 97 (2009), 189–193.
    • (2009) Chemom. Intell. Lab. Syst. , vol.97 , pp. 189-193
    • Xu, H.1    Liu, Z.C.2    Cai, W.S.3    Shao, X.G.4
  • 27
    • 79251504310 scopus 로고    scopus 로고
    • Genetic algorithm-based wavelength selection method for spectral calibration
    • [27] Arakawa, M., Yamashita, Y., Funatsu, K., Genetic algorithm-based wavelength selection method for spectral calibration. J. Chemom. 25 (2011), 10–19.
    • (2011) J. Chemom. , vol.25 , pp. 10-19
    • Arakawa, M.1    Yamashita, Y.2    Funatsu, K.3
  • 28
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • [28] Li, H.D., Liang, Y.Z., Xu, Q.S., Cao, D.S., Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648 (2009), 77–84.
    • (2009) Anal. Chim. Acta , vol.648 , pp. 77-84
    • Li, H.D.1    Liang, Y.Z.2    Xu, Q.S.3    Cao, D.S.4
  • 29
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
    • [29] Norgaard, L., Saudland, A., Wagner, J., Nielsen, J.P., Munck, L., Engelsen, S.B., Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 54 (2000), 413–419.
    • (2000) Appl. Spectrosc. , vol.54 , pp. 413-419
    • Norgaard, L.1    Saudland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 31
    • 84929000999 scopus 로고    scopus 로고
    • Determination of glycated hemoglobin using near-infrared spectroscopy combined with equidistant combination partial least squares
    • [31] Han, Y., Chen, J.M., Pan, T., Liu, G.S., Determination of glycated hemoglobin using near-infrared spectroscopy combined with equidistant combination partial least squares. Chemom. Intell. Lab. Syst. 145 (2015), 84–92.
    • (2015) Chemom. Intell. Lab. Syst. , vol.145 , pp. 84-92
    • Han, Y.1    Chen, J.M.2    Pan, T.3    Liu, G.S.4
  • 32
    • 84946887283 scopus 로고    scopus 로고
    • Iteratively variable subset optimization for multivariate calibration
    • [32] Wang, W.T., Yun, Y.H., Deng, B.C., Fan, W., Liang, Y.Z., Iteratively variable subset optimization for multivariate calibration. RSC Adv. 5 (2015), 95771–95780.
    • (2015) RSC Adv. , vol.5 , pp. 95771-95780
    • Wang, W.T.1    Yun, Y.H.2    Deng, B.C.3    Fan, W.4    Liang, Y.Z.5
  • 33
    • 70349841560 scopus 로고    scopus 로고
    • Subspace regression ensemble method based on variable clustering for near-infrared spectroscopic calibration
    • [33] Tan, C., Qin, X., Li, M.L., Subspace regression ensemble method based on variable clustering for near-infrared spectroscopic calibration. Anal. Lett. 42 (2009), 1693–1710.
    • (2009) Anal. Lett. , vol.42 , pp. 1693-1710
    • Tan, C.1    Qin, X.2    Li, M.L.3
  • 34
    • 34248531971 scopus 로고    scopus 로고
    • MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration
    • [34] Xu, L., Jiang, J.H., Zhou, Y.P., Wu, H.L., Shen, G.L., Yu, R.Q., MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration. Chemom. Intell. Lab. Syst. 87 (2007), 226–230.
    • (2007) Chemom. Intell. Lab. Syst. , vol.87 , pp. 226-230
    • Xu, L.1    Jiang, J.H.2    Zhou, Y.P.3    Wu, H.L.4    Shen, G.L.5    Yu, R.Q.6
  • 35
    • 77954586638 scopus 로고    scopus 로고
    • Quantitative determination of the components in corn and tobacco samples by using near-infrared spectroscopy and multiblock partial least squares
    • [35] Jing, M., Cai, W.S., Shao, X.G., Quantitative determination of the components in corn and tobacco samples by using near-infrared spectroscopy and multiblock partial least squares. Anal. Lett. 43 (2010), 1910–1921.
    • (2010) Anal. Lett. , vol.43 , pp. 1910-1921
    • Jing, M.1    Cai, W.S.2    Shao, X.G.3
  • 36
    • 84886235407 scopus 로고    scopus 로고
    • A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra
    • [36] Li, Y.K., Jing, J., A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra. Chemom. Intell. Lab. Syst. 130 (2014), 45–49.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , pp. 45-49
    • Li, Y.K.1    Jing, J.2
  • 37
  • 38
    • 84877138128 scopus 로고    scopus 로고
    • Subspace partial least squares model for multivariate spectroscopic calibration
    • [38] Ge, Z., Song, Z., Subspace partial least squares model for multivariate spectroscopic calibration. Chemom. Intell. Lab. Syst. 125 (2013), 51–57.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 51-57
    • Ge, Z.1    Song, Z.2
  • 39
    • 33845759000 scopus 로고    scopus 로고
    • Adaptive configuring of radial basis function network by hybrid particle swarm algorithm for QSAR studies of organic compounds
    • [39] Zhou, Y.P., Jiang, J.H., Lin, W.Q., Zou, H.Y., Wu, H.L., Shen, G.L., Yu, R.Q., Adaptive configuring of radial basis function network by hybrid particle swarm algorithm for QSAR studies of organic compounds. J. Chem. Inf. Model. 46 (2006), 2494–2501.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2494-2501
    • Zhou, Y.P.1    Jiang, J.H.2    Lin, W.Q.3    Zou, H.Y.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 40
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • [40] Kennard, R.W., Stone, L.A., Computer aided design of experiments. Technometrics 11 (1969), 137–148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.