메뉴 건너뛰기




Volumn 20, Issue 2, 2018, Pages 195-207

A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews

Author keywords

Active learning; Medical systematic reviews; Self training; Semi supervised learning; Text analytics; Text mining

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84996558280     PISSN: 13873326     EISSN: 15729419     Source Type: Journal    
DOI: 10.1007/s10796-016-9724-0     Document Type: Article
Times cited : (27)

References (25)
  • 1
  • 2
    • 0033581228 scopus 로고    scopus 로고
    • Estimating time to conduct a meta‐analysis from number of citations retrieved
    • Allen, I., & Olkin, I. (1999). Estimating time to conduct a meta‐analysis from number of citations retrieved. JAMA, 282(7), 634–635.
    • (1999) JAMA , vol.282 , Issue.7 , pp. 634-635
    • Allen, I.1    Olkin, I.2
  • 3
    • 84863777762 scopus 로고    scopus 로고
    • Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers
    • Bekhuis, T., & Demner-Fushman, D. (2012). Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers. Artificial Intelligence in Medicine, 55, 197–207.
    • (2012) Artificial Intelligence in Medicine , vol.55 , pp. 197-207
    • Bekhuis, T.1    Demner-Fushman, D.2
  • 7
    • 80053392867 scopus 로고    scopus 로고
    • Building Systematic Reviews Using Automatic Text Classification Techniques. Proceedings of the 23rd International Conference on Computational Linguistics: Posters
    • Frunza, O., Inkpen, D. and Matwin, S. (2010). Building Systematic Reviews Using Automatic Text Classification Techniques. Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics: 303–311.
    • (2010) Association for Computational Linguistics , pp. 303-311
    • Frunza, O.1    Inkpen, D.2    Matwin, S.3
  • 8
    • 84885835291 scopus 로고    scopus 로고
    • Fast and simple gradient-based optimization for semi-supervised support vector machines
    • Gieseke, F., Airola, A., Pahikkala, T., & Kramer, O. (2014). Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing, 123, 23–32.
    • (2014) Neurocomputing , vol.123 , pp. 23-32
    • Gieseke, F.1    Airola, A.2    Pahikkala, T.3    Kramer, O.4
  • 9
    • 79960726906 scopus 로고    scopus 로고
    • A semi-supervised learning algorithm based on modified self-training SVM
    • Jin, Y., Huang, C., & Zhao, L. (2011). A semi-supervised learning algorithm based on modified self-training SVM. Journal of Computers, 6(7), 1438–1443.
    • (2011) Journal of Computers , vol.6 , Issue.7 , pp. 1438-1443
    • Jin, Y.1    Huang, C.2    Zhao, L.3
  • 10
    • 84887862604 scopus 로고    scopus 로고
    • Screening for cognitive impairment in older adults: a systematic review for the U.S. preventive services task force
    • Lin, J. S., O’Connor, E., Rossom, R. C., Perdue, L. A., & Eckstrom, E. (2013). Screening for cognitive impairment in older adults: a systematic review for the U.S. preventive services task force. Annals of Internal Medicine, 159(9), 601–612.
    • (2013) Annals of Internal Medicine , vol.159 , Issue.9 , pp. 601-612
    • Lin, J.S.1    O’Connor, E.2    Rossom, R.C.3    Perdue, L.A.4    Eckstrom, E.5
  • 13
    • 84875646817 scopus 로고    scopus 로고
    • The inevitable application of big data to health care
    • Murdoch, T., & Detsky, A. (2013). The inevitable application of big data to health care. JAMA, 309(13), 1351–1352.
    • (2013) JAMA , vol.309 , Issue.13 , pp. 1351-1352
    • Murdoch, T.1    Detsky, A.2
  • 14
    • 8844253324 scopus 로고    scopus 로고
    • Understanding inverse document frequency: on theoretical arguments for IDF
    • Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for IDF. Journal of Documentation, 60(5), 503–520.
    • (2004) Journal of Documentation , vol.60 , Issue.5 , pp. 503-520
    • Robertson, S.1
  • 15
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison 52(11): 55–66.
    • (2010) University of Wisconsin, Madison , vol.52 , Issue.11 , pp. 55-66
    • Settles, B.1
  • 16
    • 84959362416 scopus 로고    scopus 로고
    • Pinpointing needles in giant haystacks: use of text mining to reduce impractical screening workload in extremely large scoping reviews
    • Shemilt, I., Simon, A., Hollands, G. J., Marteau, T. M., Ogilvie, D., O’Mara-Eves, A., Kelly, M. P., & Thomas, J. (2013). Pinpointing needles in giant haystacks: use of text mining to reduce impractical screening workload in extremely large scoping reviews. Research Synthesis Methods, 5(1), 31–49.
    • (2013) Research Synthesis Methods , vol.5 , Issue.1 , pp. 31-49
    • Shemilt, I.1    Simon, A.2    Hollands, G.J.3    Marteau, T.M.4    Ogilvie, D.5    O’Mara-Eves, A.6    Kelly, M.P.7    Thomas, J.8
  • 18
    • 84864998804 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning techniques to extract protein interaction sentences
    • Song, M., Yu, H. and Han, W. S. (2011). Combining active learning and semi-supervised learning techniques to extract protein interaction sentences. BMC bioinformatics 12.
    • (2011) BMC Bioinformatics , pp. 1-12
    • Ng, M.1    Yu, H.2    Han, W.S.3
  • 19
    • 83255176865 scopus 로고    scopus 로고
    • Applications of text mining within systematic reviews
    • Thomas, J., McNaught, J., & Ananiadou, S. (2011). Applications of text mining within systematic reviews. Research Synthesis Methods, 2(1), 1–14.
    • (2011) Research Synthesis Methods , vol.2 , Issue.1 , pp. 1-14
    • Thomas, J.1    McNaught, J.2    Ananiadou, S.3
  • 24
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey. TR-1530, University of Wisconsin-Madison
    • Zhu, X. (2005). Semi-supervised learning literature survey. TR-1530, University of Wisconsin-Madison, Department of Computer Science.
    • (2005) Department of Computer Science
    • Zhu, X.1
  • 25
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation
    • Carnegie Mellon University
    • Zhu, X. and Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University.
    • (2002) Technical Report CMU-CALD-02-107
    • Zhu, X.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.