-
1
-
-
1842527530
-
Configurational transition in a Fleming—Viot-type model and probabilistic interpretation of Laplacian eigenfunctions
-
K. Burdzy, R. Holyst, D. Ingerman and P. March, Configurational transition in a Fleming—Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A 29 (1996) 2633-2642.
-
(1996)
J. Phys. A
, vol.29
, pp. 2633-2642
-
-
Burdzy, K.1
Holyst, R.2
Ingerman, D.3
March, P.4
-
2
-
-
0034343127
-
A Fleming—Viot particle representation of Dirichlet Laplacian
-
K. Burdzy, R. Holyst and P. March, A Fleming—Viot particle representation of Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679-703.
-
(2000)
Comm. Math. Phys.
, vol.214
, pp. 679-703
-
-
Burdzy, K.1
Holyst, R.2
March, P.3
-
3
-
-
0041332886
-
On the stability of interacting processes with applications to filtering and genetic algorithms
-
P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré 37 (2001) 155-194.
-
(2001)
Ann. Inst. H. Poincaré
, vol.37
, pp. 155-194
-
-
Del Moral, P.1
Guionnet, A.2
-
4
-
-
0002936641
-
Branching and interacting particle system approximations of Feynman—Kac formulae with applications to nonlinear filtering
-
edited by J. Azema, M. Emery, M. Ledoux and M. Yor. Springer, Lecture Notes in Math, Asymptotic stability of non linear semigroups of Feynman—Kac type. Ann. Fac. Sci. Toulouse (to be published)
-
P. Del Moral and L. Miclo, Branching and interacting particle system approximations of Feynman—Kac formulae with applications to nonlinear filtering, in Séminaire de Probabilités XXXIV, edited by J. Azema, M. Emery, M. Ledoux and M. Yor. Springer, Lecture Notes in Math. 1729 (2000) 1-145. Asymptotic stability of non linear semigroups of Feynman—Kac type. Ann. Fac. Sci. Toulouse (to be published).
-
(2000)
Séminaire De Probabilités XXXIV
, vol.1729
, pp. 1-145
-
-
Del Moral, P.1
Miclo, L.2
-
6
-
-
0007461162
-
A Moran particle approximation of Feynman—Kac formulae
-
P. Del Moral and L. Miclo, A Moran particle approximation of Feynman—Kac formulae. Stochastic Process. Appl. 86 (2000) 193-216.
-
(2000)
Stochastic Process. Appl.
, vol.86
, pp. 193-216
-
-
Del Moral, P.1
Miclo, L.2
-
8
-
-
0035497808
-
Genealogies and increasing propagation of chaos for Feynman—Kac and genetic models
-
P. Del Moral and L. Miclo, Genealogies and increasing propagation of chaos for Feynman—Kac and genetic models. Ann. Appl. Probab. 11 (2001) 1166-1198.
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 1166-1198
-
-
Del Moral, P.1
Miclo, L.2
-
12
-
-
0003347458
-
Perturbation theory for linear operators
-
Springer-Verlag, Berlin, Heidelberg, New York
-
T. Kato, Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York (1980).
-
(1980)
Classics in Mathematics
-
-
Kato, T.1
-
13
-
-
84993988201
-
-
Academic Press, New York
-
M. Reed and B. Simon, Methods of modern mathematical physics, II, Fourier analysis, self adjointness. Academic Press, New York (1975).
-
(1975)
Methods of Modern Mathematical Physics, II, Fourier Analysis, Self Adjointness
-
-
Reed, M.1
Simon, B.2
-
14
-
-
84996128171
-
Brownian motion, obstacles and random media. Springer, Springer Monogr
-
A.S. Sznitman, Brownian motion, obstacles and random media. Springer, Springer Monogr. in Math. (1998).
-
(1998)
Math
-
-
Sznitman, A.S.1
|