-
1
-
-
0002564801
-
Geodesic flows on closed Riemannian manifolds of negative curvature
-
Anosov DV. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat Inst Steklov. 1967;90:3–210.
-
(1967)
Trudy Mat Inst Steklov.
, vol.90
, pp. 3-210
-
-
Anosov, D.V.1
-
2
-
-
84968514104
-
Differentiable dynamical systems
-
Smale S. Differentiable dynamical systems. Bull Amer Math Soc. 1967;73:747–817.
-
(1967)
Bull Amer Math Soc.
, vol.73
, pp. 747-817
-
-
Smale, S.1
-
4
-
-
79958795117
-
There are no C1-stable intersections of regular Cantor sets
-
Moreira CG. There are no C1-stable intersections of regular Cantor sets. Acta Math. 2011;206(2):311–323.
-
(2011)
Acta Math.
, vol.206
, Issue.2
, pp. 311-323
-
-
Moreira, C.G.1
-
5
-
-
0242344635
-
Abundance of strange attractors
-
Mora L, Viana M. Abundance of strange attractors. Acta Math. 1993;171(1):1–71. Available from:http://dx.doi.org/10.1007/BF02392766.
-
(1993)
Acta Math.
, vol.171
, Issue.1
, pp. 1-71
-
-
Mora, L.1
Viana, M.2
-
6
-
-
0000935850
-
-
Proc Amer Math Soc Sympos Pure Math
-
2. Proc Amer Math Soc Sympos Pure Math. 1970;14:191–202.
-
(1970)
2
, vol.14
, pp. 191-202
-
-
Newhouse, S.E.1
-
7
-
-
32044475236
-
Diffeomorphisms with infinitely many sinks
-
Newhouse SE. Diffeomorphisms with infinitely many sinks. Topology. 1974;13:9–18.
-
(1974)
Topology
, vol.13
, pp. 9-18
-
-
Newhouse, S.E.1
-
8
-
-
0000709901
-
Infinitely many coexisting strange attractors
-
Colli E. Infinitely many coexisting strange attractors. Ann Inst H Poincaré Anal Non Linéaire. 1998;15(5):539–579. Available from:http://dx.doi.org/10.1016/S0294-1449(98)80001-2.
-
(1998)
Ann Inst H Poincaré Anal Non Linéaire
, vol.15
, Issue.5
, pp. 539-579
-
-
Colli, E.1
-
9
-
-
0000298739
-
High dimension diffeomorphisms displaying infinitely many periodic attractors
-
Palis J, Viana M. High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann of Math (2). 1994;140(1):207–250. Available from:http://dx.doi.org/10.2307/2118546.
-
(1994)
Ann of Math (2)
, vol.140
, Issue.1
, pp. 207-250
-
-
Palis, J.1
Viana, M.2
-
10
-
-
0001951104
-
Strange attractors in higher dimensions
-
Viana M. Strange attractors in higher dimensions. Bol Soc Brasil Mat (NS). 1993;24(1):13–62. Available from:http://dx.doi.org/10.1007/BF01231695.
-
(1993)
Bol Soc Brasil Mat (NS)
, vol.24
, Issue.1
, pp. 13-62
-
-
Viana, M.1
-
11
-
-
43049145034
-
High dimension diffeomorphisms exhibiting infinitely many strange attractors
-
Leal B. High dimension diffeomorphisms exhibiting infinitely many strange attractors. Ann Inst H Poincaré Anal Non Linéaire. 2008;25(3):587–607. Available from:http://dx.doi.org/10.1016/j.anihpc.2007.03.002.
-
(2008)
Ann Inst H Poincaré Anal Non Linéaire
, vol.25
, Issue.3
, pp. 587-607
-
-
Leal, B.1
-
12
-
-
0001874180
-
Nongenericity of Ω-stability
-
Providence, R.I.: Amer. Math. Soc
-
Abraham R, Smale S. Nongenericity of Ω-stability. In:Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968). Providence, R.I.:Amer. Math. Soc.; 1970. p. 5–8.
-
(1970)
Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)
, pp. 5-8
-
-
Abraham, R.1
Smale, S.2
-
13
-
-
0009271575
-
A 3-dimensional Abraham-Smale example
-
Simon CP. A 3-dimensional Abraham-Smale example. Proc Amer Math Soc. 1972;34:629–630.
-
(1972)
Proc Amer Math Soc.
, vol.34
, pp. 629-630
-
-
Simon, C.P.1
-
14
-
-
0039332325
-
Persistent nonhyperbolic transitive diffeomorphisms
-
Bonatti C, Díaz LJ. Persistent nonhyperbolic transitive diffeomorphisms. Ann Math (2). 1996;143(2):357–396.
-
(1996)
Ann Math (2)
, vol.143
, Issue.2
, pp. 357-396
-
-
Bonatti, C.1
Díaz, L.J.2
-
15
-
-
84862077041
-
Robust transitivity in hamiltonian dynamics
-
Nassiri M, Pujals ER. Robust transitivity in hamiltonian dynamics. Ann Sci Éc Norm Supér. 2012;45(2):191–239.
-
(2012)
Ann Sci Éc Norm Supér.
, vol.45
, Issue.2
, pp. 191-239
-
-
Nassiri, M.1
Pujals, E.R.2
-
16
-
-
33745292753
-
Crossing bifurcations and unstable dimension variability
-
Jun
-
Alligood KT, Sander E, Yorke JA. Crossing bifurcations and unstable dimension variability. Phys Rev Lett. 2006 Jun;96:244103. Available from:http://link.aps.org/doi/10.1103/PhysRevLett.96.244103
-
(2006)
Phys Rev Lett.
, vol.96
, pp. 244103
-
-
Alligood, K.T.1
Sander, E.2
Yorke, J.A.3
-
17
-
-
17644415794
-
An example of a wild strange attractor
-
Turaev DV, Shil'nikov LP. An example of a wild strange attractor. Mat Sb. 1998;189(2):137–160. Available from:http://dx.doi.org/10.1070/SM1998v189n02ABEH000300
-
(1998)
Mat Sb.
, vol.189
, Issue.2
, pp. 137-160
-
-
Turaev, D.V.1
Shil'nikov, L.P.2
-
18
-
-
32044445484
-
Three-dimensional Hénon-like maps and wild Lorenz-like attractors
-
Gonchenko SV, Ovsyannikov II, Simó C, Turaev D. Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Int J Bifur Chaos Appl Sci Engrg. 2005;15(11):3493–3508; Available from:http://dx.doi.org/10.1142/S0218127405014180
-
(2005)
Int J Bifur Chaos Appl Sci Engrg.
, vol.15
, Issue.11
, pp. 3493-3508
-
-
Gonchenko, S.V.1
Ovsyannikov, I.I.2
Simó, C.3
Turaev, D.4
-
20
-
-
84949112063
-
From wild Lorenz-like to wild Rovella-like dynamics
-
Hittmeyer S, Krauskopf B, Osinga HM. From wild Lorenz-like to wild Rovella-like dynamics. Dyn Syst. 2015;30(4):525–542. Available from:http://dx.doi.org/10.1080/14689367.2015.1081677
-
(2015)
Dyn Syst.
, vol.30
, Issue.4
, pp. 525-542
-
-
Hittmeyer, S.1
Krauskopf, B.2
Osinga, H.M.3
-
21
-
-
10944272553
-
3
-
Ibáñez S, Rodríguez JA. Shil′nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on. J Differ Equ. 2005;208(1):147–175. Available from:http://dx.doi.org/10.1016/j.jde.2003.08.006
-
(2005)
J Differ Equ.
, vol.208
, Issue.1
, pp. 147-175
-
-
Ibáñez, S.1
Rodríguez, J.A.2
-
22
-
-
81155123072
-
Heteroclinic cycles arising in generic unfoldings of nilpotent singularities
-
Barrientos PG, Ibáñez S, Rodríguez JÁ. Heteroclinic cycles arising in generic unfoldings of nilpotent singularities. J Dynam Differ Equ. 2011;23(4):999–1028. Available from:http://dx.doi.org/10.1007/s10884-011-9230-5
-
(2011)
J Dynam Differ Equ.
, vol.23
, Issue.4
, pp. 999-1028
-
-
Barrientos, P.G.1
Ibáñez, S.2
Rodríguez, J.Á.3
-
24
-
-
84876380046
-
About the unfolding of a Hopf-zero singularity
-
Dumortier F, Ibáñez S, Kokubu H, et al. About the unfolding of a Hopf-zero singularity. Discrete Contin Dyn Syst. 2013;33(10):4435–4471. Available from:http://dx.doi.org/10.3934/dcds.2013.33.4435
-
(2013)
Discrete Contin Dyn Syst.
, vol.33
, Issue.10
, pp. 4435-4471
-
-
Dumortier, F.1
Ibáñez, S.2
Kokubu, H.3
-
25
-
-
34447265301
-
Coupling leads to chaos
-
Drubi F, Ibáñez S, Rodríguez JÁ. Coupling leads to chaos. J Differ Equ. 2007;239(2):371–385. Available from:http://dx.doi.org/10.1016/j.jde.2007.05.024
-
(2007)
J Differ Equ.
, vol.239
, Issue.2
, pp. 371-385
-
-
Drubi, F.1
Ibáñez, S.2
Rodríguez, J.Á.3
-
26
-
-
0002997858
-
Existence of a denumerable set of periodic motions in a four dimensional space in an extended neighbourhood of a saddle-focus
-
Shil'nikov LP. Existence of a denumerable set of periodic motions in a four dimensional space in an extended neighbourhood of a saddle-focus. Soviet Math Dokl. 1967;8:54–58.
-
(1967)
Soviet Math Dokl.
, vol.8
, pp. 54-58
-
-
Shil'nikov, L.P.1
-
27
-
-
0001309540
-
Bifocal homoclinic orbits in four dimensions
-
Fowler AC, Sparrow CT. Bifocal homoclinic orbits in four dimensions. Nonlinearity. 1991;4(4):1159–1182. Available from:http://stacks.iop.org/0951-7715/4/1159
-
(1991)
Nonlinearity
, vol.4
, Issue.4
, pp. 1159-1182
-
-
Fowler, A.C.1
Sparrow, C.T.2
-
28
-
-
84945931797
-
On the dynamics near a homoclinic network to a bifocus: switching and horseshoes
-
Ibáñez S, Rodrigues A. On the dynamics near a homoclinic network to a bifocus:switching and horseshoes. Int J Bifur Chaos Appl Sci Engrg. 2015;25(11):1530030. Available from:http://dx.doi.org/10.1142/S021812741530030X
-
(2015)
Int J Bifur Chaos Appl Sci Engrg.
, vol.25
, Issue.11
, pp. 1530030
-
-
Ibáñez, S.1
Rodrigues, A.2
-
29
-
-
0000107832
-
Homoclinic orbits in Hamiltonian systems
-
Devaney RL. Homoclinic orbits in Hamiltonian systems. J Differ. Equ. 1976;21(2):431–438.
-
(1976)
J Differ. Equ.
, vol.21
, Issue.2
, pp. 431-438
-
-
Devaney, R.L.1
-
30
-
-
0000702649
-
Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus
-
Lerman LM. Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus. Chaos. 1991;1(2):174–180; Available from:http://dx.doi.org/10.1063/1.165859
-
(1991)
Chaos.
, vol.1
, Issue.2
, pp. 174-180
-
-
Lerman, L.M.1
-
31
-
-
0002236568
-
Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci
-
Lerman LM. Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci. Regul Khaoticheskaya Din. 1997;2(3–4):139–155; V. I. Arnol′d (on the occasion of his 60th birthday) Russian.
-
(1997)
Regul Khaoticheskaya Din.
, vol.2
, Issue.3-4
, pp. 139-155
-
-
Lerman, L.M.1
-
32
-
-
0034287927
-
Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system
-
Lerman LM. Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system. J Stat Phys. 2000;101(1–2):357–372; dedicated to Grégoire Nicolis on the occasion of his sixtieth birthday (Brussels, 1999). Available from:http://dx.doi.org/10.1023/A:1026411506781
-
(2000)
J Stat Phys.
, vol.101
, Issue.1-2
, pp. 357-372
-
-
Lerman, L.M.1
-
33
-
-
44149109395
-
1-generic dynamics
-
1-generic dynamics. J Inst Math Jussieu. 2008;7(3):469–525. Available from:http://dx.doi.org/10.1017/S1474748008000030
-
(2008)
J Inst Math Jussieu.
, vol.7
, Issue.3
, pp. 469-525
-
-
Bonatti, C.1
Díaz, L.2
-
35
-
-
22244440263
-
Cascades of reversible homoclinic orbits to a saddle-focus equilibrium
-
Härterich J. Cascades of reversible homoclinic orbits to a saddle-focus equilibrium. Phys D. 1998;112(1–2):187–200.
-
(1998)
Phys D.
, Issue.1-2
, pp. 187-200
-
-
Härterich, J.1
-
37
-
-
84859034708
-
Stabilization of heterodimensional cycles
-
Bonatti C, Díaz LJ, Kiriki S. Stabilization of heterodimensional cycles. Nonlinearity. 2012;25(4):931–960. Available from:http://stacks.iop.org/0951-7715/25/i=4/a=931
-
(2012)
Nonlinearity
, vol.25
, Issue.4
, pp. 931-960
-
-
Bonatti, C.1
Díaz, L.J.2
Kiriki, S.3
-
38
-
-
84915752248
-
Symbolic blender-horseshoes and applications
-
Barrientos PG, Ki Y, Raibekas A. Symbolic blender-horseshoes and applications. Nonlinearity. 2014;27(12):2805–2839. Available from:http://stacks.iop.org/0951-7715/27/i=12/a=2805
-
(2014)
Nonlinearity
, vol.27
, Issue.12
, pp. 2805-2839
-
-
Barrientos, P.G.1
Ki, Y.2
Raibekas, A.3
-
41
-
-
84980075817
-
On the generalization of a theorem of A
-
Moser J. On the generalization of a theorem of A. Liapounoff. Comm Pure Appl Math. 1958;11:257–271.
-
(1958)
Liapounoff. Comm Pure Appl Math.
, vol.11
, pp. 257-271
-
-
Moser, J.1
-
42
-
-
84956112887
-
Sufficient orbits of a group of contact diffeomorphisms
-
Lyčagin VV. Sufficient orbits of a group of contact diffeomorphisms. Math USSR Sbornik. 1977;33(2):223–242.
-
(1977)
Math USSR Sbornik.
, vol.33
, Issue.2
, pp. 223-242
-
-
Lyčagin, V.V.1
-
43
-
-
8744288727
-
Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem
-
Banyaga A, de la Llave R, Wayne CE. Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem. J Geom Anal. 1996;6(4):613–649 (1997). Available from:http://dx.doi.org/10.1007/BF02921624
-
(1997)
J Geom Anal.
, vol.6
, Issue.4
, pp. 613-649
-
-
Banyaga, A.1
de la Llave, R.2
Wayne, C.E.3
-
44
-
-
0002528251
-
Normal forms of vector fields satisfying certain geometric conditions
-
Basel: Birkhäuser
-
Bronstein IU, Kopanskii AY. Normal forms of vector fields satisfying certain geometric conditions. In:Broer HW, Hoveijn I, Takens F, van Gils SA, editors. Nonlinear dynamical systems and chaos (Groningen, 1995). Vol. 19 of Progress in Nonlinear Differential Equations and Applications; Basel:Birkhäuser; 1996. p. 79–101.
-
(1996)
Broer HW, Hoveijn I, Takens F, van Gils SA, editors. Nonlinear dynamical systems and chaos (Groningen, 1995). Vol. 19 of Progress in Nonlinear Differential Equations and Applications
, pp. 79-101
-
-
Bronstein, I.U.1
Kopanskii, A.Y.2
-
45
-
-
85012297095
-
Plenty of elliptic islands for the standard family of area preserving maps
-
Duarte P. Plenty of elliptic islands for the standard family of area preserving maps. Ann Inst H Poincaré Anal Non Linéaire. 1994;11(4):359–409.
-
(1994)
Ann Inst H Poincaré Anal Non Linéaire
, vol.11
, Issue.4
, pp. 359-409
-
-
Duarte, P.1
-
47
-
-
0003478288
-
-
New York, NY: Springer-Verlag
-
Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Vol. 42, Applied Mathematical Sciences. New York, NY:Springer-Verlag; 1990.
-
(1990)
Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Vol. 42, Applied Mathematical Sciences
-
-
Guckenheimer, J.1
Holmes, P.2
-
48
-
-
22244488957
-
Bifurcations of systems with a homoclinic curve of the saddle-focus with a zero saddle value
-
Belyakov LA. Bifurcations of systems with a homoclinic curve of the saddle-focus with a zero saddle value. Mat Zametki. 1984;36(5):681–689.
-
(1984)
Mat Zametki.
, vol.36
, Issue.5
, pp. 681-689
-
-
Belyakov, L.A.1
-
49
-
-
84968512387
-
Cascades of period-doubling bifurcations: a prerequisite for horseshoes
-
Yorke JA, Alligood KT. Cascades of period-doubling bifurcations:a prerequisite for horseshoes. Bull Amer Math Soc (NS). 1983;9(3):319–322. Available from:http://dx.doi.org/10.1090/S0273-0979-1983-15191-1
-
(1983)
Bull Amer Math Soc (NS)
, vol.9
, Issue.3
, pp. 319-322
-
-
Yorke, J.A.1
Alligood, K.T.2
-
50
-
-
21544446405
-
On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
-
Gonchenko S, Shilnikov L. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. J Math Sci. 2005;128(2):2767–2773. Available from:http://dx.doi.org/10.1007/s10958-005-0228-6
-
(2005)
J Math Sci.
, vol.128
, Issue.2
, pp. 2767-2773
-
-
Gonchenko, S.1
Shilnikov, L.2
-
52
-
-
0002512816
-
Homoclinic orbits in the dynamic phase-space analogy of an elastic strut
-
Amick CJ, Toland JF. Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. Eur J Appl Math. 1992;3(2):97–114. Available from:http://dx.doi.org/10.1017/S0956792500000735
-
(1992)
Eur J Appl Math.
, vol.3
, Issue.2
, pp. 97-114
-
-
Amick, C.J.1
Toland, J.F.2
-
53
-
-
36149031023
-
Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems
-
Champneys AR, Toland JF. Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems. Nonlinearity. 1993;6(5):665–721. Available from:http://stacks.iop.org/0951-7715/6/665
-
(1993)
Nonlinearity
, vol.6
, Issue.5
, pp. 665-721
-
-
Champneys, A.R.1
Toland, J.F.2
-
54
-
-
53349120754
-
Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system
-
Buffoni B, Champneys AR, Toland JF. Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J Dynam Differ Equ. 1996;8(2):221–279; Available from:http://dx.doi.org/10.1007/BF02218892
-
(1996)
J Dynam Differ Equ.
, vol.8
, Issue.2
, pp. 221-279
-
-
Buffoni, B.1
Champneys, A.R.2
Toland, J.F.3
-
55
-
-
0000144949
-
Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods
-
Buffoni B. Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods. Nonlinear Anal. 1996;26(3):443–462. Available from:http://dx.doi.org/10.1016/0362-546X(94)00290-X
-
(1996)
Nonlinear Anal.
, vol.26
, Issue.3
, pp. 443-462
-
-
Buffoni, B.1
-
56
-
-
0000654735
-
Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics
-
Champneys AR. Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Phys D. 1998;112(1–2):158–186 Available from:http://dx.doi.org/10.1016/S0167-2789(97)00209-1
-
(1998)
Phys D.
, vol.112
, Issue.1-2
, pp. 158-186
-
-
Champneys, A.R.1
-
57
-
-
0001093993
-
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
-
Hofer H, Wysocki K. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann. 1990;288(3):483–503. Available from:http://dx.doi.org/10.1007/BF01444543
-
(1990)
Math. Ann.
, vol.288
, Issue.3
, pp. 483-503
-
-
Hofer, H.1
Wysocki, K.2
-
58
-
-
84859772535
-
How to find a codimension-one heteroclinic cycle between two periodic orbits
-
Zhang W, Krauskopf B, Kirk V. How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete Contin Dyn Syst. 2012;32(8):2825–2851. Available from:http://dx.doi.org/10.3934/dcds.2012.32.2825
-
(2012)
Discrete Contin Dyn Syst.
, vol.32
, Issue.8
, pp. 2825-2851
-
-
Zhang, W.1
Krauskopf, B.2
Kirk, V.3
-
59
-
-
33846055493
-
Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms
-
Pumariño A, Tatjer JC. Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms. Nonlinearity. 2006;19(12):2833–2852. Available from:http://dx.doi.org/10.1088/0951-7715/19/12/006
-
(2006)
Nonlinearity
, vol.19
, Issue.12
, pp. 2833-2852
-
-
Pumariño, A.1
Tatjer, J.C.2
-
60
-
-
37349060057
-
Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms
-
Pumariño A, Tatjer JC. Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete Contin Dyn Syst Ser B. 2007;8(4):971–1005 (electronic). Available from:http://dx.doi.org/10.3934/dcdsb.2007.8.971
-
(2007)
Discrete Contin Dyn Syst Ser B.
, vol.8
, Issue.4
, pp. 971-1005
-
-
Pumariño, A.1
Tatjer, J.C.2
-
61
-
-
84921447549
-
Chaotic dynamics for two-dimensional tent maps
-
Pumariño A, Rodríguez JÁ, Tatjer JC, Vigil E. Chaotic dynamics for two-dimensional tent maps. Nonlinearity. 2015;28(2):407–434. Available from:http://dx.doi.org/10.1088/0951-7715/28/2/407
-
(2015)
Nonlinearity
, vol.28
, Issue.2
, pp. 407-434
-
-
Pumariño, A.1
Rodríguez, J.Á.2
Tatjer, J.C.3
Vigil, E.4
|