메뉴 건너뛰기




Volumn 70, Issue , 2017, Pages 1-19

A survey on computational intelligence approaches for predictive modeling in prostate cancer

Author keywords

Computational intelligence; Disease classification; Evolutionary computation; Machine learning; Metaheuristic optimisation; Predictive modeling; Prostate cancer prediction; Soft computing

Indexed keywords

ANT COLONY OPTIMIZATION; ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BIOMIMETICS; DEEP LEARNING; DISEASES; EVOLUTIONARY ALGORITHMS; INTELLIGENT COMPUTING; LEARNING SYSTEMS; MARKOV PROCESSES; PARTICLE SWARM OPTIMIZATION (PSO); SOFT COMPUTING; SURVEYS; UROLOGY;

EID: 84995890343     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2016.11.006     Document Type: Review
Times cited : (79)

References (124)
  • 1
    • 84944213103 scopus 로고    scopus 로고
    • Identification of novel epigenetic markers of prostate cancer by noti-microarray analysis
    • Alexey, A.D., Eugenia, E., Rosenberg, G.S., Krasnov, e.a., Identification of novel epigenetic markers of prostate cancer by noti-microarray analysis. Disease Markers, 2015(241301), 2015.
    • (2015) Disease Markers , vol.2015
    • Alexey, A.D.1    Eugenia, E.2    Rosenberg, G.S.3    Krasnov, E.A.4
  • 4
    • 85029261762 scopus 로고    scopus 로고
    • Medical image computing and computer-assisted intervention – miccai 2015: 18th international conference, Munich, Germany, October 5—9, 2015, proceedings, part ii
    • Springer International Publishing Cham
    • Azizi, S., Imani, F., Zhuang, B., Tahmasebi, A., Kwak, J.T., Xu, S.,.. Abolmaesumi, P., Medical image computing and computer-assisted intervention – miccai 2015: 18th international conference, Munich, Germany, October 5—9, 2015, proceedings, part ii. 2015, Springer International Publishing, Cham, 70–77).
    • (2015) , pp. 70-77)
    • Azizi, S.1    Imani, F.2    Zhuang, B.3    Tahmasebi, A.4    Kwak, J.T.5    Xu, S.6    Abolmaesumi, P.7
  • 6
    • 33746862009 scopus 로고    scopus 로고
    • Neuro-fuzzy system for prostate cancer diagnosis
    • Benecchi, L., Neuro-fuzzy system for prostate cancer diagnosis. Urology 68:2 (2006), 357–361.
    • (2006) Urology , vol.68 , Issue.2 , pp. 357-361
    • Benecchi, L.1
  • 7
    • 84892451381 scopus 로고    scopus 로고
    • Statistical language and speech processing: First international conference, SLSP 2013, Tarragona, Spain, July 29–31, 2013. proceedings
    • A.-H. Dediu C. Martín-Vide R. Mitkov B. Truthe Springer Berlin Heidelberg Berlin, Heidelberg
    • Bengio, Y., Statistical language and speech processing: First international conference, SLSP 2013, Tarragona, Spain, July 29–31, 2013. proceedings. Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B., (eds.) Deep learning of representations: Looking forward, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–37.
    • (2013) Deep learning of representations: Looking forward , pp. 1-37
    • Bengio, Y.1
  • 8
    • 67349194941 scopus 로고    scopus 로고
    • A survey on metaheuristics for stochastic combinatorial optimization
    • Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W., A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing 8:2 (2009), 239–287.
    • (2009) Natural Computing , vol.8 , Issue.2 , pp. 239-287
    • Bianchi, L.1    Dorigo, M.2    Gambardella, L.3    Gutjahr, W.4
  • 9
    • 0033088311 scopus 로고    scopus 로고
    • Should this patient be screened for cancer?
    • Black, W.C., Should this patient be screened for cancer?. Effective Clinical Practice 2:2 (1999), 86–95.
    • (1999) Effective Clinical Practice , vol.2 , Issue.2 , pp. 86-95
    • Black, W.C.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Machine Learning 45:1 (2001), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 58349121633 scopus 로고    scopus 로고
    • Early prostate cancer diagnosis by using artificial neural networks and support vector machines
    • Çinar, M., Engin, M., Engin, E.Z., Ziya Ateşçi, Y., Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Systemswith Applications 36:3 (2009), 6357–6361.
    • (2009) Expert Systemswith Applications , vol.36 , Issue.3 , pp. 6357-6361
    • Çinar, M.1    Engin, M.2    Engin, E.Z.3    Ziya Ateşçi, Y.4
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Machine Learning 20:3 (1995), 273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 84973459517 scopus 로고    scopus 로고
    • Prediction of pathological stage in patients with prostate cancer: A neuro-fuzzy model
    • Cosma, G., Acampora, G., Brown, D., Rees, R.C., Khan, M., Pockley, A.G., Prediction of pathological stage in patients with prostate cancer: A neuro-fuzzy model. PLoS ONE 11:6 (2016), 1–27.
    • (2016) PLoS ONE , vol.11 , Issue.6 , pp. 1-27
    • Cosma, G.1    Acampora, G.2    Brown, D.3    Rees, R.C.4    Khan, M.5    Pockley, A.G.6
  • 22
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice, L.R., Measures of the amount of ecologic association between species. Ecology 26:3 (1945), 297–302.
    • (1945) Ecology , vol.26 , Issue.3 , pp. 297-302
    • Dice, L.R.1
  • 24
    • 0031122887 scopus 로고    scopus 로고
    • Ant colony system: A cooperative learning approach to the traveling salesman problem
    • Dorigo, M., Gambardella, L.M., Ant colony system: A cooperative learning approach to the traveling salesman problem. Transactionson Evolutionary Computation 1:1 (1997), 53–66.
    • (1997) Transactionson Evolutionary Computation , vol.1 , Issue.1 , pp. 53-66
    • Dorigo, M.1    Gambardella, L.M.2
  • 25
    • 84555179528 scopus 로고    scopus 로고
    • A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies
    • Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A., A boosted bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. Biomedical Engineering, IEEE Transactions on 59:5 (2012), 1205–1218.
    • (2012) Biomedical Engineering, IEEE Transactions on , vol.59 , Issue.5 , pp. 1205-1218
    • Doyle, S.1    Feldman, M.2    Tomaszewski, J.3    Madabhushi, A.4
  • 26
    • 84875210843 scopus 로고    scopus 로고
    • External validation of an artificial neural network and two nomograms for prostate cancer detection
    • Ecke, T.H., Hallmann, S., Koch, S., Ruttloff, J., Cammann, H., Gerullis, H.,.. Stephan, C., External validation of an artificial neural network and two nomograms for prostate cancer detection. ISRN Urology, 2012, 2012.
    • (2012) ISRN Urology , vol.2012
    • Ecke, T.H.1    Hallmann, S.2    Koch, S.3    Ruttloff, J.4    Cammann, H.5    Gerullis, H.6    Stephan, C.7
  • 28
    • 22344432656 scopus 로고    scopus 로고
    • Comparison among five evolutionary-based optimization algorithms
    • Elbeltagi, E., Hegazy, T., Grierson, D., Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 19:1 (2005), 43–53.
    • (2005) Advanced Engineering Informatics , vol.19 , Issue.1 , pp. 43-53
    • Elbeltagi, E.1    Hegazy, T.2    Grierson, D.3
  • 30
    • 33747171381 scopus 로고    scopus 로고
    • Primer: using decision analysis to improve clinical decision making in urology.
    • Elkin, E., Vickers, A., Kattan, M., Primer: using decision analysis to improve clinical decision making in urology. Nature Reviews Urology 3:8 (2006), 439–448.
    • (2006) Nature Reviews Urology , vol.3 , Issue.8 , pp. 439-448
    • Elkin, E.1    Vickers, A.2    Kattan, M.3
  • 31
    • 79952385040 scopus 로고    scopus 로고
    • Applying random forests to identify biomarker panels in serum 2d-dige data for the detection and staging of prostate cancer
    • Fan, Y., Murphy, T.B., Byrne, J.C., Brennan, L., Fitzpatrick, J.M., Watson, R.W.G., Applying random forests to identify biomarker panels in serum 2d-dige data for the detection and staging of prostate cancer. Journal of Proteome Research 10:3 (2011), 1361–1373.
    • (2011) Journal of Proteome Research , vol.10 , Issue.3 , pp. 1361-1373
    • Fan, Y.1    Murphy, T.B.2    Byrne, J.C.3    Brennan, L.4    Fitzpatrick, J.M.5    Watson, R.W.G.6
  • 33
    • 84905690900 scopus 로고    scopus 로고
    • Clinical proteomic biomarkers: relevant issues on study design and technical considerations in biomarker development
    • Frantzi, M., Bhat, A., Latosinska, A., Clinical proteomic biomarkers: relevant issues on study design and technical considerations in biomarker development. Clinical and Translational Medicine, 3(1), 2014, 7.
    • (2014) Clinical and Translational Medicine , vol.3 , Issue.1 , pp. 7
    • Frantzi, M.1    Bhat, A.2    Latosinska, A.3
  • 34
    • 84869083275 scopus 로고    scopus 로고
    • Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer
    • Froelich, W., Papageorgiou, E.I., Samarinas, M., Skriapas, K., Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Applied Soft Computing 12:12 (2012), 3810–3817.
    • (2012) Applied Soft Computing , vol.12 , Issue.12 , pp. 3810-3817
    • Froelich, W.1    Papageorgiou, E.I.2    Samarinas, M.3    Skriapas, K.4
  • 36
    • 84983119355 scopus 로고    scopus 로고
    • Machine learning approaches to analyze histological images of tissues from radical prostatectomies
    • Information Technologies in Biomedicine
    • Gertych, A., Ing, N., Ma, Z., Fuchs, T.J., Salman, S., Mohanty, S.,.. Knudsen, B.S., Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Computerized Medical Imaging and Graphics 46, Part 2 (2015), 197–208 Information Technologies in Biomedicine.
    • (2015) Computerized Medical Imaging and Graphics , vol.46 Part 2 , pp. 197-208
    • Gertych, A.1    Ing, N.2    Ma, Z.3    Fuchs, T.J.4    Salman, S.5    Mohanty, S.6    Knudsen, B.S.7
  • 38
    • 83655203485 scopus 로고    scopus 로고
    • Supervised regularized canonical correlation analysis: Integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery
    • Golugula, A., Lee, G., Master, S.R., Feldman, M.D., Tomaszewski, J.E., Speicher, D.W., Madabhushi, A., Supervised regularized canonical correlation analysis: Integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. BMC bioinformatics, 12, 2011, 483.
    • (2011) BMC bioinformatics , vol.12 , pp. 483
    • Golugula, A.1    Lee, G.2    Master, S.R.3    Feldman, M.D.4    Tomaszewski, J.E.5    Speicher, D.W.6    Madabhushi, A.7
  • 39
    • 79954426905 scopus 로고    scopus 로고
    • Partially observable markov decision model for the treatment of early prostate cancer
    • Goulionis, J.E., Koutsiumaris, B.K., Partially observable markov decision model for the treatment of early prostate cancer. Opsearch 47:2 (2010), 105–117.
    • (2010) Opsearch , vol.47 , Issue.2 , pp. 105-117
    • Goulionis, J.E.1    Koutsiumaris, B.K.2
  • 41
    • 84995935901 scopus 로고    scopus 로고
    • Deformable MR prostate segmentation via deep feature learning and sparse patch matching
    • 1–1
    • Guo, Y., Gao, Y., Shen, D., Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Transactions on Medical Imaging, PP(99), 2015 1–1.
    • (2015) IEEE Transactions on Medical Imaging , vol.PP , Issue.99
    • Guo, Y.1    Gao, Y.2    Shen, D.3
  • 42
    • 84957837518 scopus 로고    scopus 로고
    • Deep learning for visual understanding: A review
    • Recent Developments on Deep Big Vision
    • Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S., Deep learning for visual understanding: A review. Neurocomputing 187 (2016), 27–48 Recent Developments on Deep Big Vision.
    • (2016) Neurocomputing , vol.187 , pp. 27-48
    • Guo, Y.1    Liu, Y.2    Oerlemans, A.3    Lao, S.4    Wu, S.5    Lew, M.S.6
  • 43
    • 79951592151 scopus 로고    scopus 로고
    • Comparison of fuzzy and neural network models to diagnose breast cancer
    • Springer
    • Hameed, W.A., Bagavandas, M., Comparison of fuzzy and neural network models to diagnose breast cancer. Control, computation and information systems, 2011, Springer, 241–248.
    • (2011) Control, computation and information systems , pp. 241-248
    • Hameed, W.A.1    Bagavandas, M.2
  • 44
    • 84990941766 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • 3rd ed. Morgan Kaufmann Publishers Inc San Francisco, CA, USA
    • Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques. 3rd ed., 2011, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.
    • (2011)
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 50
    • 58049180144 scopus 로고
    • Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
    • MIT Press Cambridge, MA, USA
    • Holland, J.H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. 1992, MIT Press, Cambridge, MA, USA.
    • (1992)
    • Holland, J.H.1
  • 51
    • 0015956495 scopus 로고
    • Towards a network theory of the immune system.
    • Jerne, N.K., Towards a network theory of the immune system. Annales d'immunologie 125C:1–2 (1974), 373–389.
    • (1974) Annales d'immunologie , vol.125C , Issue.1-2 , pp. 373-389
    • Jerne, N.K.1
  • 52
    • 84896727645 scopus 로고    scopus 로고
    • A new method for predicting patient survivorship using efficient Bayesian Network Learning
    • Jiang, X., Xue, D., Brufsky, A., Khan, S., Neapolitan, R., A new method for predicting patient survivorship using efficient Bayesian Network Learning. Cancer Informatics 13 (2014), 47–57.
    • (2014) Cancer Informatics , vol.13 , pp. 47-57
    • Jiang, X.1    Xue, D.2    Brufsky, A.3    Khan, S.4    Neapolitan, R.5
  • 54
    • 21044454260 scopus 로고    scopus 로고
    • Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen
    • Karakiewicz, P.I., Benayoun, S., Kattan, M.W., Perrotte, P., Valiquette, L., Scardino, P.T.,.. Aprikian, A.G., et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. The Journal of Urology 173:6 (2005), 1930–1934.
    • (2005) The Journal of Urology , vol.173 , Issue.6 , pp. 1930-1934
    • Karakiewicz, P.I.1    Benayoun, S.2    Kattan, M.W.3    Perrotte, P.4    Valiquette, L.5    Scardino, P.T.6    Aprikian, A.G.7
  • 55
    • 47249157999 scopus 로고    scopus 로고
    • Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy
    • Kawakami, S., Numao, N., Okubo, Y., Koga, F., Yamamoto, S., Saito, K.,.. Kihara, K., et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy. European Urology 54:3 (2008), 601–611.
    • (2008) European Urology , vol.54 , Issue.3 , pp. 601-611
    • Kawakami, S.1    Numao, N.2    Okubo, Y.3    Koga, F.4    Yamamoto, S.5    Saito, K.6    Kihara, K.7
  • 56
    • 84862828885 scopus 로고    scopus 로고
    • Active surveillance for prostate cancer compared with immediate treatment
    • Keegan, K.A., A, D.M., Durbin-Johnson, B., Evans, C.P., Active surveillance for prostate cancer compared with immediate treatment. Cancer 118:14 (2012), 3512–3518.
    • (2012) Cancer , vol.118 , Issue.14 , pp. 3512-3518
    • Keegan, K.A.1    Durbin-Johnson, B.2    Evans, C.P.3
  • 59
    • 84879161988 scopus 로고    scopus 로고
    • A TRUS prostate segmentation using gabor texture features and snake-like contour
    • Kim, S.G., Seo, Y.G., A TRUS prostate segmentation using gabor texture features and snake-like contour. Journal of Information Processing Systems 9:1 (2013), 103–116.
    • (2013) Journal of Information Processing Systems , vol.9 , Issue.1 , pp. 103-116
    • Kim, S.G.1    Seo, Y.G.2
  • 63
    • 84920116342 scopus 로고    scopus 로고
    • Integration of artificial immune network and k-means for cluster analysis
    • Kuo, R., Chen, S.S., Cheng, W.C., Tsai, C., Integration of artificial immune network and k-means for cluster analysis. Knowledgeand Information Systems 40:3 (2014), 541–557.
    • (2014) Knowledgeand Information Systems , vol.40 , Issue.3 , pp. 541-557
    • Kuo, R.1    Chen, S.S.2    Cheng, W.C.3    Tsai, C.4
  • 64
  • 65
    • 8344269337 scopus 로고    scopus 로고
    • Knowledge acquisition in PROSTANET a Bayesian network for diagnosing prostate cancer
    • V. Palade R.J. Howlett L. Jain Springer Berlin Heidelberg
    • Lacave, C., Dez, F.J., Knowledge acquisition in PROSTANET a Bayesian network for diagnosing prostate cancer. Palade, V., Howlett, R.J., Jain, L., (eds.) Knowledge-based intelligent information and engineering systems, Lecture Notes in Computer Science, Vol. 2774, 2003, Springer Berlin Heidelberg, 1345–1350.
    • (2003) Knowledge-based intelligent information and engineering systems, Lecture Notes in Computer Science , vol.2774 , pp. 1345-1350
    • Lacave, C.1    Dez, F.J.2
  • 66
    • 84929843809 scopus 로고    scopus 로고
    • Learning Bayesian Networks by Genetic Algorithms: A case study in the prediction of survival in malignant skin melanoma
    • E. Keravnou C. Garbay R. Baud J. Wyatt Springer Berlin Heidelberg
    • Larranaga, P., Sierra, B., Gallego, M.J., Michelena, M.J., Picaza, J.M., Learning Bayesian Networks by Genetic Algorithms: A case study in the prediction of survival in malignant skin melanoma. Keravnou, E., Garbay, C., Baud, R., Wyatt, J., (eds.) Artificial intelligence in medicine, Lecture Notes in Computer Science, Vol. 1211, 1997, Springer Berlin Heidelberg, 261–272.
    • (1997) Artificial intelligence in medicine, Lecture Notes in Computer Science , vol.1211 , pp. 261-272
    • Larranaga, P.1    Sierra, B.2    Gallego, M.J.3    Michelena, M.J.4    Picaza, J.M.5
  • 69
    • 33745700788 scopus 로고    scopus 로고
    • Role of transrectal ultrasonography in the prediction of prostate cancer artificial neural network analysis
    • Lee, H.J., Kim, K.G., Lee, S.E., Byun, S.-S., Hwang, S.I., Jung, S.I.,.. Kim, S.H., Role of transrectal ultrasonography in the prediction of prostate cancer artificial neural network analysis. Journal of Ultrasound in Medicine 25:7 (2006), 815–821.
    • (2006) Journal of Ultrasound in Medicine , vol.25 , Issue.7 , pp. 815-821
    • Lee, H.J.1    Kim, K.G.2    Lee, S.E.3    Byun, S.-S.4    Hwang, S.I.5    Jung, S.I.6    Kim, S.H.7
  • 70
    • 84983095445 scopus 로고    scopus 로고
    • Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification
    • IEEE
    • Lehaire, J., Flamary, R., Rouviere, O., Lartizien, C., Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. Image processing (ICIP), 2014 IEEE international conference on, 2014, IEEE, 2251–2255.
    • (2014) Image processing (ICIP), 2014 IEEE international conference on , pp. 2251-2255
    • Lehaire, J.1    Flamary, R.2    Rouviere, O.3    Lartizien, C.4
  • 72
    • 84900310308 scopus 로고    scopus 로고
    • Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data
    • Luque-Baena, R.M., Urda, D., Subirats, J.L., Franco, L., Jerez, J.M., Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data. Theoretical Biology and Medical Modelling 11:1 (2014), 1–18.
    • (2014) Theoretical Biology and Medical Modelling , vol.11 , Issue.1 , pp. 1-18
    • Luque-Baena, R.M.1    Urda, D.2    Subirats, J.L.3    Franco, L.4    Jerez, J.M.5
  • 74
    • 84909999260 scopus 로고    scopus 로고
    • Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging
    • Matulewicz, L., Jansen, J.F., Bokacheva, L., Vargas, H.A., Akin, O., Fine, S.W.,.. Koutcher, J.A., et al. Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging. Journal of Magnetic Resonance Imaging 40:6 (2014), 1414–1421.
    • (2014) Journal of Magnetic Resonance Imaging , vol.40 , Issue.6 , pp. 1414-1421
    • Matulewicz, L.1    Jansen, J.F.2    Bokacheva, L.3    Vargas, H.A.4    Akin, O.5    Fine, S.W.6    Koutcher, J.A.7
  • 75
    • 79955750168 scopus 로고    scopus 로고
    • A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI
    • International Society for Optics and Photonics 79633Q–79633Q
    • Mazzetti, S., De Luca, M., Bracco, C., Vignati, A., Giannini, V., Stasi, M.,.. Regge, D., A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI. Spie medical imaging, 2011, International Society for Optics and Photonics 79633Q–79633Q.
    • (2011) Spie medical imaging
    • Mazzetti, S.1    De Luca, M.2    Bracco, C.3    Vignati, A.4    Giannini, V.5    Stasi, M.6    Regge, D.7
  • 76
    • 84940450965 scopus 로고    scopus 로고
    • An open-source genetic algorithm for determining optimal seed distributions for low-dose-rate prostate brachytherapy
    • McGeachy, P., Madamesila, J., Beauchamp, A., Khan, R., An open-source genetic algorithm for determining optimal seed distributions for low-dose-rate prostate brachytherapy. Brachytherapy 14:5 (2015), 692–702.
    • (2015) Brachytherapy , vol.14 , Issue.5 , pp. 692-702
    • McGeachy, P.1    Madamesila, J.2    Beauchamp, A.3    Khan, R.4
  • 80
    • 77956318710 scopus 로고    scopus 로고
    • Computational Intelligence: Collaboration, Fusion and Emergence
    • 1st ed. Springer Publishing Company, Incorporated
    • Mumford, C.L., Jain, L.C., Computational Intelligence: Collaboration, Fusion and Emergence. 1st ed., 2009, Springer Publishing Company, Incorporated.
    • (2009)
    • Mumford, C.L.1    Jain, L.C.2
  • 84
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C., Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysisand Machine Intelligence 27:8 (2005), 1226–1238.
    • (2005) IEEE Transactions on Pattern Analysisand Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 86
    • 77949901722 scopus 로고    scopus 로고
    • Ensemble learning
    • Polikar, R., Ensemble learning. Scholarpedia, 4(1), 2009, 2776.
    • (2009) Scholarpedia , vol.4 , Issue.1 , pp. 2776
    • Polikar, R.1
  • 87
    • 27744558577 scopus 로고    scopus 로고
    • Estimation of treatment benefits when PSA screening for prostate cancer is discontinued at different ages
    • Ross, K.S., Guess, H.A., Carter, H.B., Estimation of treatment benefits when PSA screening for prostate cancer is discontinued at different ages. Urology 66:5 (2005), 1038–1042.
    • (2005) Urology , vol.66 , Issue.5 , pp. 1038-1042
    • Ross, K.S.1    Guess, H.A.2    Carter, H.B.3
  • 89
    • 84929502664 scopus 로고    scopus 로고
    • A hybrid particle swarm and neural network approach for detection of prostate cancer from benign hyperplasia of prostate.
    • Sadoughi, F., Ghaderzadeh, M., A hybrid particle swarm and neural network approach for detection of prostate cancer from benign hyperplasia of prostate. Studies in Health Technology and Informatics 205 (2013), 481–485.
    • (2013) Studies in Health Technology and Informatics , vol.205 , pp. 481-485
    • Sadoughi, F.1    Ghaderzadeh, M.2
  • 91
    • 84956663836 scopus 로고    scopus 로고
    • Clinical management and burden of prostate cancer: A markov monte carlo model
    • Sanyal, C., Aprikian, A., Cury, F., Chevalier, S., Dragomir, A., Clinical management and burden of prostate cancer: A markov monte carlo model. PLoS ONE, 9(12), 2014, e113432.
    • (2014) PLoS ONE , vol.9 , Issue.12 , pp. e113432
    • Sanyal, C.1    Aprikian, A.2    Cury, F.3    Chevalier, S.4    Dragomir, A.5
  • 92
    • 80053578933 scopus 로고    scopus 로고
    • Prognosis of prostate cancer by artificial neural networks
    • Saritas, I., Ozkan, I.A., Sert, I.U., Prognosis of prostate cancer by artificial neural networks. Expert Systems with Applications 37:9 (2010), 6646–6650.
    • (2010) Expert Systems with Applications , vol.37 , Issue.9 , pp. 6646-6650
    • Saritas, I.1    Ozkan, I.A.2    Sert, I.U.3
  • 95
    • 84955496300 scopus 로고    scopus 로고
    • mir-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating androgen receptor splice variants, ezh2, and src
    • Shi, X.-B., Ma, A.-H., Xue, L., Li, M., Nguyen, H.G., Yang, J.C.,.. deVere White, R.W., mir-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating androgen receptor splice variants, ezh2, and src. Cancer Research 75:24 (2015), 5309–5317.
    • (2015) Cancer Research , vol.75 , Issue.24 , pp. 5309-5317
    • Shi, X.-B.1    Ma, A.-H.2    Xue, L.3    Li, M.4    Nguyen, H.G.5    Yang, J.C.6    deVere White, R.W.7
  • 96
    • 84890976298 scopus 로고    scopus 로고
    • Level set priors based approach to the segmentation of prostate ultrasound image using genetic algorithm
    • Shi, Y., Liu, Y., Wu, P., Level set priors based approach to the segmentation of prostate ultrasound image using genetic algorithm. Intelligent Automation & Soft Computing 19:4 (2013), 537–544.
    • (2013) Intelligent Automation & Soft Computing , vol.19 , Issue.4 , pp. 537-544
    • Shi, Y.1    Liu, Y.2    Wu, P.3
  • 98
    • 67349242569 scopus 로고    scopus 로고
    • A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model
    • Smith, W.P., Doctor, J.N., Meyer, J., Kalet, I.J., Phillips, M.H., A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model. Artificial Intelligence in Medicine 46:2 (2009), 119–130.
    • (2009) Artificial Intelligence in Medicine , vol.46 , Issue.2 , pp. 119-130
    • Smith, W.P.1    Doctor, J.N.2    Meyer, J.3    Kalet, I.J.4    Phillips, M.H.5
  • 99
    • 0027772390 scopus 로고
    • Markov models in medical decision making: a practical guide
    • Sonnenberg, F., Beck, J., Markov models in medical decision making: a practical guide. Medical Decision Making 13:4 (1993), 322–338.
    • (1993) Medical Decision Making , vol.13 , Issue.4 , pp. 322-338
    • Sonnenberg, F.1    Beck, J.2
  • 100
    • 70349459448 scopus 로고    scopus 로고
    • Benign prostatic hyperplasia-associated free prostate-specific antigen improves detection of prostate cancer in an artificial neural network
    • Stephan, C., Cammann, H., Deger, S., Schrader, M., Meyer, H.A., Miller, K.,.. Jung, K., Benign prostatic hyperplasia-associated free prostate-specific antigen improves detection of prostate cancer in an artificial neural network. Urology 74:4 (2009), 873–877.
    • (2009) Urology , vol.74 , Issue.4 , pp. 873-877
    • Stephan, C.1    Cammann, H.2    Deger, S.3    Schrader, M.4    Meyer, H.A.5    Miller, K.6    Jung, K.7
  • 102
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk, H.-I., Lee, S.-W., Shen, D., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101 (2014), 569–582.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 104
    • 80054958174 scopus 로고    scopus 로고
    • Prostate cancer detection on dynamic contrast-enhanced MRI: Computer-aided diagnosis versus single perfusion parameter maps
    • Sung, Y.S., Kwon, H.-J., Park, B.-W., Cho, G., Lee, C.K., Cho, K.-S., Kim, J.K., Prostate cancer detection on dynamic contrast-enhanced MRI: Computer-aided diagnosis versus single perfusion parameter maps. American Journal of Roentgenology 197:5 (2011), 1122–1129.
    • (2011) American Journal of Roentgenology , vol.197 , Issue.5 , pp. 1122-1129
    • Sung, Y.S.1    Kwon, H.-J.2    Park, B.-W.3    Cho, G.4    Lee, C.K.5    Cho, K.-S.6    Kim, J.K.7
  • 105
    • 84888212150 scopus 로고    scopus 로고
    • Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology
    • Swan, A.L., Mobasheri, A., Allaway, D., Liddell, S., Bacardit, J., Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology. OMICS: A Journal of Integrative Biology, 17(12), 2013, 595610.
    • (2013) OMICS: A Journal of Integrative Biology , vol.17 , Issue.12 , pp. 595610
    • Swan, A.L.1    Mobasheri, A.2    Allaway, D.3    Liddell, S.4    Bacardit, J.5
  • 106
    • 33644549657 scopus 로고    scopus 로고
    • An artificial immune system approach to document clustering
    • H. Haddad L.M. Liebrock A. Omicini R.L. Wainwright ACM
    • Tang, N., Vemuri, V.R., An artificial immune system approach to document clustering. Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L., (eds.) SAC, 2005, ACM, 918–922.
    • (2005) SAC , pp. 918-922
    • Tang, N.1    Vemuri, V.R.2
  • 109
    • 84901033064 scopus 로고    scopus 로고
    • Soft computing models based feature selection for TRUS prostate cancer image classification
    • Thangavel, K., Manavalan, R., Soft computing models based feature selection for TRUS prostate cancer image classification. Soft Computing 18:6 (2014), 1165–1176.
    • (2014) Soft Computing , vol.18 , Issue.6 , pp. 1165-1176
    • Thangavel, K.1    Manavalan, R.2
  • 111
    • 85047692735 scopus 로고    scopus 로고
    • Using decision forest to classify prostate cancer samples on the basis of seldi-tof ms data: Assessing chance correlation and prediction confidence
    • Tong, W., Xie, Q., Hong, H., Fang, H., Shi, L., Perkins, R., Petricoin, E.F., Using decision forest to classify prostate cancer samples on the basis of seldi-tof ms data: Assessing chance correlation and prediction confidence. Environmental Health Perspectives 112:16 (2004), 1622–1627.
    • (2004) Environmental Health Perspectives , vol.112 , Issue.16 , pp. 1622-1627
    • Tong, W.1    Xie, Q.2    Hong, H.3    Fang, H.4    Shi, L.5    Perkins, R.6    Petricoin, E.F.7
  • 112
    • 63449098959 scopus 로고    scopus 로고
    • The quaternion lms algorithm for adaptive filtering of hypercomplex processes
    • Took, C.C., Mandic, D.P., The quaternion lms algorithm for adaptive filtering of hypercomplex processes. IEEE Transactions on Signal Processing 57:4 (2009), 1316–1327.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.4 , pp. 1316-1327
    • Took, C.C.1    Mandic, D.P.2
  • 113
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L., Aliferis, C., The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65:1 (2006), 31–78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 116
    • 84858067105 scopus 로고    scopus 로고
    • Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis
    • Vos, P., Barentsz, J., Karssemeijer, N., Huisman, H., Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Physics in Medicine and Biology, 57(6), 2012, 1527.
    • (2012) Physics in Medicine and Biology , vol.57 , Issue.6 , pp. 1527
    • Vos, P.1    Barentsz, J.2    Karssemeijer, N.3    Huisman, H.4
  • 118
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang, Z., Gerstein, M., Snyder, M., RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10:1 (2009), 57–63.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 120
    • 43049127535 scopus 로고    scopus 로고
    • Cross-platform analysis of cancer biomarkers: A Bayesian Network approach to incorporating mass spectrometry and microarray data
    • Xutao, D., Huimin, G., Hesham, H.A., Cross-platform analysis of cancer biomarkers: A Bayesian Network approach to incorporating mass spectrometry and microarray data. Cancer Informatics, 3, 2007.
    • (2007) Cancer Informatics , vol.3
    • Xutao, D.1    Huimin, G.2    Hesham, H.A.3
  • 123
    • 0034194316 scopus 로고    scopus 로고
    • Multi-objective optimization in radiotherapy: applications to stereotactic radiosurgery and prostate brachytherapy
    • Yu, Y., Zhang, J., Cheng, G., Schell, M., Okunieff, P., Multi-objective optimization in radiotherapy: applications to stereotactic radiosurgery and prostate brachytherapy. Artificial Intelligence in Medicine 19:1 (2000), 39–51.
    • (2000) Artificial Intelligence in Medicine , vol.19 , Issue.1 , pp. 39-51
    • Yu, Y.1    Zhang, J.2    Cheng, G.3    Schell, M.4    Okunieff, P.5
  • 124


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.