-
1
-
-
79952037324
-
Hyperspectral image classification using denoising of intrinsic mode functions
-
Mar.
-
B. Demir, S. Ertürk, and M. K. Güllü, "Hyperspectral image classification using denoising of intrinsic mode functions, " IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 220-224, Mar. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.2
, pp. 220-224
-
-
Demir, B.1
Ertürk, S.2
Güllü, M.K.3
-
2
-
-
84905903346
-
Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles
-
Jun.
-
P. Ghamisi, J. A. Benediktsson, G. Cavallaro, and A. Plaza, "Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2147-2160, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2147-2160
-
-
Ghamisi, P.1
Benediktsson, J.A.2
Cavallaro, G.3
Plaza, A.4
-
3
-
-
85027928433
-
Multiple morphological profiles from multicomponent-base images for hyperspectral image classification
-
Dec.
-
X. Huang et al., "Multiple morphological profiles from multicomponent-base images for hyperspectral image classification, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 12, pp. 4653-4669, Dec. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.12
, pp. 4653-4669
-
-
Huang, X.1
-
4
-
-
35748962938
-
A genetic algorithm (GA) based automated classifier for remote sensing imagery
-
M.-D. Yang, "A genetic algorithm (GA) based automated classifier for remote sensing imagery, " Can. J. Remote Sens., vol. 33, no. 3, pp. 203-213, 2007.
-
(2007)
Can. J. Remote Sens.
, vol.33
, Issue.3
, pp. 203-213
-
-
Yang, M.-D.1
-
5
-
-
6444239877
-
Application of remotely sensed data to the assessment of terrain factors affecting the Tsao-Ling landslide
-
M. D. Yang, Y. F. Yang, and S. C. Hsu, "Application of remotely sensed data to the assessment of terrain factors affecting the Tsao-Ling landslide, " Can. J. Remote Sens., vol. 30, pp. 593-603, 2004.
-
(2004)
Can. J. Remote Sens.
, vol.30
, pp. 593-603
-
-
Yang, M.D.1
Yang, Y.F.2
Hsu, S.C.3
-
6
-
-
84861725237
-
A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification
-
Apr.
-
I. Dópido, A. Villa, A. Plaza, and P. Gamba, "A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 421-435, Apr. 2012.
-
(2012)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.5
, Issue.2
, pp. 421-435
-
-
Dópido, I.1
Villa, A.2
Plaza, A.3
Gamba, P.4
-
7
-
-
78049529938
-
Systematic image quality assessment for sewer inspection
-
M.-D. Yang, T.-C. Su, N.-F. Pan, and Y.-F. Yang, "Systematic image quality assessment for sewer inspection, " Expert Syst. Appl., vol. 38, no. 3, pp. 1766-1776, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.3
, pp. 1766-1776
-
-
Yang, M.-D.1
Su, T.-C.2
Pan, N.-F.3
Yang, Y.-F.4
-
8
-
-
84886249755
-
An improved local statistics filter for denoising of SAR images
-
Springer, Heidelberg
-
V. Bhateja, A. Tripathi and A. Gupta, "An improved local statistics filter for denoising of SAR images, " in Recent Advances in Intelligent Informatics. Springer, Heidelberg, vol. 235, pp. 23-29, 2014.
-
(2014)
Recent Advances in Intelligent Informatics
, vol.235
, pp. 23-29
-
-
Bhateja, V.1
Tripathi, A.2
Gupta, A.3
-
10
-
-
79953204311
-
Feature extraction of sewer pipe defects using wavelet transform and co-occurrence matrix
-
M.-D. Yang, T.-C. Su, N.-F. Pan, and P. Liu, "Feature extraction of sewer pipe defects using wavelet transform and co-occurrence matrix, " Int. J. Wavelets, Multiresolution Inf. Process., vol. 9, no. 2, pp. 211-225, 2011.
-
(2011)
Int. J. Wavelets, Multiresolution Inf. Process.
, vol.9
, Issue.2
, pp. 211-225
-
-
Yang, M.-D.1
Su, T.-C.2
Pan, N.-F.3
Liu, P.4
-
11
-
-
84888299612
-
Hyperspectral remote sensing image classification based on rotation forest
-
Jan.
-
J. Xia, P. Du, X. He, and J. Chanussot, "Hyperspectral remote sensing image classification based on rotation forest, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239-243, Jan. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.1
, pp. 239-243
-
-
Xia, J.1
Du, P.2
He, X.3
Chanussot, J.4
-
12
-
-
56349114835
-
Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis
-
M.-D. Yang and T.-C. Su, "Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis, " Expert Syst. Appl., vol. 36, no. 2, pp. 3562-3573, 2009.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.2
, pp. 3562-3573
-
-
Yang, M.-D.1
Su, T.-C.2
-
13
-
-
79957986883
-
Morphological segmentation based on edge detection for sewer pipe defects on CCTV images
-
T.-C. Su, M.-D. Yang, T.-C. Wu, and J.-Y. Lin, "Morphological segmentation based on edge detection for sewer pipe defects on CCTV images, " Expert Syst. Appl., vol. 38, no. 10, pp. 13094-13114, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.10
, pp. 13094-13114
-
-
Su, T.-C.1
Yang, M.-D.2
Wu, T.-C.3
Lin, J.-Y.4
-
14
-
-
84966479845
-
Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising
-
G. Luo, G. Chen, L. Tian, K. Qin, and S.-E. Qian, "Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising, " Can. J. Remote Sens., vol. 42, no. 2, pp. 106-116, 2016.
-
(2016)
Can. J. Remote Sens.
, vol.42
, Issue.2
, pp. 106-116
-
-
Luo, G.1
Chen, G.2
Tian, L.3
Qin, K.4
Qian, S.-E.5
-
15
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
Mar.
-
N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, " Proc. Roy. Soc. London A, vol. 454, pp. 903-995, Mar. 1998.
-
(1998)
Proc. Roy. Soc. London A
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
-
16
-
-
84929612220
-
Enhancing seismic reflections using empirical mode decomposition in the flattened domain
-
Aug.
-
Y. Chen, G. Zhang, S. Gan, and C. Zhang, "Enhancing seismic reflections using empirical mode decomposition in the flattened domain, " J. Appl. Geophys., vol. 119, pp. 99-105, Aug. 2015.
-
(2015)
J. Appl. Geophys.
, vol.119
, pp. 99-105
-
-
Chen, Y.1
Zhang, G.2
Gan, S.3
Zhang, C.4
-
17
-
-
84916597150
-
Applications of empirical mode decomposition in random noise attenuation of seismic data
-
Nov.
-
Y. Chen, C. Zhou, J. Yuan and Z. Jin, "Applications of empirical mode decomposition in random noise attenuation of seismic data, " J. Seism. Explor., vol. 23, no. 5, pp. 481-495, Nov. 2014.
-
(2014)
J. Seism. Explor.
, vol.23
, Issue.5
, pp. 481-495
-
-
Chen, Y.1
Zhou, C.2
Yuan, J.3
Jin, Z.4
-
18
-
-
84905512206
-
Random noise attenuation by f-x empirical-mode decomposition predictive filtering
-
Y. Chen and J. Ma, "Random noise attenuation by f-x empirical-mode decomposition predictive filtering, " Geophysics, vol. 79, no. 3, pp. V81-V91, 2014.
-
(2014)
Geophysics
, vol.79
, Issue.3
, pp. V81-V91
-
-
Chen, Y.1
Ma, J.2
-
19
-
-
0036407813
-
2D empirical mode decompositions in the spirit of image compression
-
Mar.
-
A. Linderhed, "2D empirical mode decompositions in the spirit of image compression, " Proc. SPIE, vol. 4738, pp. 1-8, Mar. 2002.
-
(2002)
Proc. SPIE
, vol.4738
, pp. 1-8
-
-
Linderhed, A.1
-
20
-
-
49749119531
-
Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation
-
Dec.
-
S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, "Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation, " EURASIP J. Adv. Signal Process., vol. 2008, no. 164, pp. 1-18, Dec. 2008.
-
(2008)
EURASIP J. Adv. Signal Process.
, vol.2008
, Issue.164
, pp. 1-18
-
-
Bhuiyan, S.M.A.1
Adhami, R.R.2
Khan, J.F.3
-
21
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
22
-
-
84890844620
-
Long-term time series prediction using OP-ELM
-
Mar.
-
A. Grigorievskiy, Y. Miche, A.-M. Ventelä, E. Séverin, and A. Lendasse, "Long-term time series prediction using OP-ELM, " Neural Netw., vol. 51, pp. 50-56, Mar. 2014.
-
(2014)
Neural Netw.
, vol.51
, pp. 50-56
-
-
Grigorievskiy, A.1
Miche, Y.2
Ventelä, A.-M.3
Séverin, E.4
Lendasse, A.5
-
23
-
-
84905505705
-
SVM tutorial-Classification, regression and ranking
-
Berlin, Germany: Springer
-
H. Yu and S. Kim, "SVM tutorial-Classification, regression and ranking, " in Handbook of Natural Computing, vol. 1. Berlin, Germany: Springer, 2012, pp. 479-506.
-
(2012)
Handbook of Natural Computing
, vol.1
, pp. 479-506
-
-
Yu, H.1
Kim, S.2
-
24
-
-
84873735712
-
A support vector machine (SVM) approach to imbalanced datasets of customer responses: Comparison with other customer response models
-
G. Kim, B. K. Chae, and D. L. Olson, "A support vector machine (SVM) approach to imbalanced datasets of customer responses: Comparison with other customer response models, " Service Bus., vol. 7, no. 1, pp. 167-182, 2013.
-
(2013)
Service Bus.
, vol.7
, Issue.1
, pp. 167-182
-
-
Kim, G.1
Chae, B.K.2
Olson, D.L.3
-
25
-
-
44949223479
-
Automated diagnosis of sewer pipe defects based on machine learning approaches
-
M.-D. Yang and T.-C. Su, "Automated diagnosis of sewer pipe defects based on machine learning approaches, " Expert Syst. Appl., vol. 35, no. 3, pp. 1327-1337, 2008.
-
(2008)
Expert Syst. Appl.
, vol.35
, Issue.3
, pp. 1327-1337
-
-
Yang, M.-D.1
Su, T.-C.2
-
26
-
-
84856668103
-
BiCoS: A bi-level co-segmentation method for image classification
-
Nov.
-
Y. Chai, V. Lempitsky, and A. Zisserman, "BiCoS: A bi-level co-segmentation method for image classification, " in Proc. ICCV, Nov. 2011, pp. 2579-2586.
-
(2011)
Proc. ICCV
, pp. 2579-2586
-
-
Chai, Y.1
Lempitsky, V.2
Zisserman, A.3
-
27
-
-
84942059280
-
Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion
-
Feb.
-
R. Hang, Q. Liu, H. Song, and Y. Sun, "Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 2, pp. 783-794, Feb. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.2
, pp. 783-794
-
-
Hang, R.1
Liu, Q.2
Song, H.3
Sun, Y.4
-
28
-
-
79951820684
-
Kernel maximum autocorrelation factor and minimum noise fraction transformations
-
Mar.
-
A. A. Nielsen, "Kernel maximum autocorrelation factor and minimum noise fraction transformations, " IEEE Trans. Image Process., vol. 20, no. 3, pp. 612-624, Mar. 2011.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.3
, pp. 612-624
-
-
Nielsen, A.A.1
-
29
-
-
79952449647
-
A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
-
Jul.
-
H. Chen, B. Yang, J. Liu, and D. Liu, "A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis, " Expert Syst. Appl., vol. 38, pp. 9014-9022, Jul. 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 9014-9022
-
-
Chen, H.1
Yang, B.2
Liu, J.3
Liu, D.4
-
30
-
-
84884500104
-
Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition
-
Jan.
-
M. Trusiak, M. Wielgus, and K. Patorski, "Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition, " Opt. Lasers Eng., vol. 52, pp. 230-240, Jan. 2014.
-
(2014)
Opt. Lasers Eng.
, vol.52
, pp. 230-240
-
-
Trusiak, M.1
Wielgus, M.2
Patorski, K.3
-
31
-
-
84888297111
-
Spectral-spatial classification of multispectral images using kernel feature space representation
-
Jan.
-
S. Bernabé, P. R. Marpu, A. Plaza, M. Dalla Mura, and J. A. Benediktsson, "Spectral-spatial classification of multispectral images using kernel feature space representation, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 288-292, Jan. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.1
, pp. 288-292
-
-
Bernabé, S.1
Marpu, P.R.2
Plaza, A.3
Dalla Mura, M.4
Benediktsson, J.A.5
|