메뉴 건너뛰기




Volumn 1, Issue 1, 2014, Pages 99-107

Corrigendum to: Childhood Brain Cancer in Florida: A Bayesian Clustering Approach (Statistics and Public Policy, (2014), 1, 1, (99-107), 10.1080/2330443X.2014.970247);Childhood Brain Cancer in Florida: A Bayesian Clustering Approach

Author keywords

Exceedence probability; Florida zip code; Pediatric brain cancer; Relative risk

Indexed keywords


EID: 84995321791     PISSN: None     EISSN: 2330443X     Source Type: Journal    
DOI: 10.1080/2330443X.2015.1128192     Document Type: Erratum
Times cited : (28)

References (21)
  • 5
  • 7
    • 0037198581 scopus 로고    scopus 로고
    • Zero-Inflated Models for Regression Analysis of Count Data: A Study of Growth and Development
    • Cheung, Y.B., (2002), “Zero-Inflated Models for Regression Analysis of Count Data: A Study of Growth and Development,” Statistics in Medicine, 21, 1461–1469.
    • (2002) Statistics in Medicine , vol.21 , pp. 1461-1469
    • Cheung, Y.B.1
  • 8
    • 0002799511 scopus 로고    scopus 로고
    • Model Choice: A Minimum Posterior Predictive Loss Approach
    • Gelfand, A.E., and Ghosh, S.K., (1998), “Model Choice: A Minimum Posterior Predictive Loss Approach,” Biometrika, 85, 1–11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 9
    • 84867086419 scopus 로고    scopus 로고
    • Prior Distributions for Variance Parameters in Hierarchical Models
    • comment on article by Browne and Draper),), ’’
    • Gelman, A., (2006), “Prior Distributions for Variance Parameters in Hierarchical Models’’ (comment on article by Browne and Draper), Bayesian Analysis, 1, 515–534.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 10
    • 84957435344 scopus 로고    scopus 로고
    • Understanding Predictive Information Criteria for Bayesian Models
    • Gelman, A., Hwang, J., and Vehtari, A., (2013), “Understanding Predictive Information Criteria for Bayesian Models,” Statistics and Computing, 1–20.
    • (2013) Statistics and Computing , pp. 1-20
    • Gelman, A.1    Hwang, J.2    Vehtari, A.3
  • 12
    • 33644614801 scopus 로고    scopus 로고
    • Cluster Detection Diagnostics for Small Area Health Data: With Reference to Evaluation of Local Likelihood Models
    • Hossain, M., and Lawson, A.B., (2006), “Cluster Detection Diagnostics for Small Area Health Data: With Reference to Evaluation of Local Likelihood Models,” Statistics in Medicine, 25, 771–786.
    • (2006) Statistics in Medicine , vol.25 , pp. 771-786
    • Hossain, M.1    Lawson, A.B.2
  • 13
    • 77049115418 scopus 로고    scopus 로고
    • Space-Time Bayesian Small Area Disease Risk Models: Development and Evaluation with a Focus on Cluster Detection
    • ———
    • ——— (2010), “Space-Time Bayesian Small Area Disease Risk Models: Development and Evaluation with a Focus on Cluster Detection,” Environmental and Ecological Statistics, 17, 73–95.
    • (2010) Environmental and Ecological Statistics , vol.17 , pp. 73-95
  • 16
    • 84939272051 scopus 로고    scopus 로고
    • Hierarchical modeling in spatial epidemiology
    • 6, 405–417, ———
    • ——— (2014), “Hierarchical modeling in spatial epidemiology,” WIREs Computational Statistics, 6, 405–417.
    • (2014) WIREs Computational Statistics
  • 17
    • 3142718445 scopus 로고    scopus 로고
    • Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies
    • Richardson, S., Thomson, A., Best, N., and Elliott, P., (2004), “Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies,” Environmental Health Perspectives, 112, 1016–1025.
    • (2004) Environmental Health Perspectives , vol.112 , pp. 1016-1025
    • Richardson, S.1    Thomson, A.2    Best, N.3    Elliott, P.4
  • 18
    • 84910630436 scopus 로고    scopus 로고
    • Evaluation of Cluster Recovery for Small Area Relative Risk Models
    • Rotejanaprasert, C., (2014), “Evaluation of Cluster Recovery for Small Area Relative Risk Models,” Statistical Methods in Medical Research, DOI: 10.1177/0962280214527382.
    • (2014) Statistical Methods in Medical Research
    • Rotejanaprasert, C.1
  • 19
    • 78650518993 scopus 로고    scopus 로고
    • Modeling Type 1 and Type 2 Diabetes Mellitus Incidence in Youth: An Application of Bayesian Hierarchical Regression for Sparse Small Area Data
    • Song, H.-R., Lawson, A., D’Agostino, Jr.R.B., and Liese, A.D., (2011), “Modeling Type 1 and Type 2 Diabetes Mellitus Incidence in Youth: An Application of Bayesian Hierarchical Regression for Sparse Small Area Data,” Spatial and Spatio-Temporal Epidemiology, 2, 23–33.
    • (2011) Spatial and Spatio-Temporal Epidemiology , vol.2 , pp. 23-33
    • Song, H.-R.1    Lawson, A.2    D’Agostino, R.B.3    Liese, A.D.4
  • 21
    • 79551500649 scopus 로고    scopus 로고
    • Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
    • Watanabe, S., (2010), “Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory,” The Journal of Machine Learning Research, 11, 3571–3594.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3571-3594
    • Watanabe, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.